LRP: a new adhesion molecule for endothelial and smooth muscle cells

2001 ◽  
Vol 281 (4) ◽  
pp. F739-F750 ◽  
Author(s):  
Chuan Hu ◽  
Juan A. Oliver ◽  
Michael R. Goldberg ◽  
Qais Al-Awqati

We recently generated a monoclonal antibody that disrupted the association of endothelial cells with their target location during kidney development. Here, we purified the antigen of this monoclonal antibody to homogeneity using rat mesangial cell cytosol. Sequence revealed that it is a previously identified protein, termed the “laminin receptor precursor” (LRP). We found that this protein is expressed in most tissues, but immunocytochemistry revealed that it is present largely or entirely in blood vessels where it is located underneath endothelial cells and in between smooth muscle cells of the vascular wall. Vascular smooth muscle cells such as mesangial cells produce and secrete LRP into their extracellular matrix where it is present in several molecular weight forms. Endothelial cells produce very little if any of the protein, but they bind avidly to LRP-coated dishes. Anti-LRP antibodies prevent the binding of smooth muscle cells to uncoated plates, implying that cells that secrete it use it for attachment. In an assay for heterologous cell-to-cell interaction, antibodies to LRP inhibited the binding of smooth muscle cells to endothelial cells. Maturation and differentiation of blood vessels require interaction between endothelial and smooth muscle cells. LRP is a new component of the mesangial matrix, and we propose that it is an adhesion molecule that mediates an interaction between smooth muscle cells and endothelia.

1987 ◽  
Author(s):  
J L Gordon

ATP, although known mainly as an intracellular energy source, is also capable of acting extracellularly as a vasoactive agent of great potency, at concentrations around lμM or less. ADP is approximately equipotent with ATP in its actions on extracellular receptors in the vasculature.ATP and ADP can arise extracellularly through release from the cytoplasm of cellsexposed to damaging stimuli or by degranulation of platelets. The concentration of the nucleotides in the cytoplasm of most cells (including vascular endothelial and smooth muscle cells) is more than ImM, and the concentration in the dense storage granules of platelets approaches 1M. Thus, there is potential for very high localised concentrations of ATP and ADP in the plasma following platelet degranulation or damageto cells of the vessel well. Release from vascular endothelial and smooth muscle cells can occur with no loss of cell viability or leakage of cytoplasmic proteins.The vasoactivity of ATP and ADP is mediated via P2 purinoceptors. Vasodilation can be induced through the release of EDRF from endothelial cells or through stimulation of PGI2 production (PGI2 is a vasodilator in many, althoughnot all, arterial beds). Purinoceptor-mediated prostacyclin production can be stimulated from perfused vascular beds (e.g. theheart andthe lung), from isolated blood vessels or from cultured endothelial cells.In some blood vessels, purinoceptor-mediated vasoconstriction can be induced by direct actionon the vascular smooth muscle cells. The receptors responsible are sub-classified as P2X (which induce vasoconstriction) and P2Y (whichinduce vasodilation). The P2Y purinoceptor that mediates EDRF production is very similar to that which is responsible for PGI2 production, although there are some intriguing differences inthe potency of ATP analogs at stimulating these two responses, even on the same cells. The intracellular mechanisms responsible have not yet been fully elucidated, but it appears that elevation of intracellular calcium is likely to play a causal role.Adenosine, which is the product of ATP and ADP metabolism by nucleotidases, can also induce vasodilation in many blood vessels, acting via P1] purinoceptors on the smooth muscle cells, but its potency is often less than that of ATP and ADP.The fate of adenine nucleotides released into the plasma is determined by ectonucleotidases on the luminal surface of the endothelial cells, not by enzymes in the blood itself (the half-life of ATP in samples of blood or plasma is many minutes, while in the microcirculation the half-life isless than one second). Endothelial ectonucleotidases have been detected in several vascular beds, and many of their characteristics are now known. These enzymes are distinct entities from the P2 purinoceptors on endothelium, as shown by the marked differences in potency of several ATP analogs as P2 receptor stimulants and as substrates for the nucleotidases.In summary, vascular endothelial and smooth muscle cells respond to extracellularATP and ADP, and can also metabolise thesenucleotides extracellularly by ectonucleotidases. In addition, ATP and ADP can be selectively released from the cells of the vessel wall and from activated platelets. Thus, the endothelial pericellular environment can be the site of complex interactions by which vascular tone is regulated through the release, actions and metabolism ofextracellular nucleotides.


Development ◽  
1991 ◽  
Vol 113 (3) ◽  
pp. 749-754 ◽  
Author(s):  
L. Holmgren ◽  
A. Glaser ◽  
S. Pfeifer-Ohlsson ◽  
R. Ohlsson

We have examined the role of platelet-derived growth factor (PDGF) ligand and receptor genes in the angiogenic process of the developing human placenta. In situ hybridization analysis of first trimester placentae showed that most microcapillary endothelial cells coexpress the PDGF-B and PDGF beta-receptor genes. This observation indicates that PDGF-B may participate in placental angiogenesis by forming autostimulatory loops in capillary endothelial cells to promote cell proliferation. Endothelial cells of macro blood vessels maintained high PDGF-B expression, whereas PDGF beta-receptor mRNA was not detectable. In contrast, PDGF beta-receptor mRNA was readily detectable in fibroblast-like cells and smooth muscle cells in the surrounding intima of intermediate and macro blood vessels. Taken together, these data suggest that the PDGF-B signalling pathway appears to switch from an autocrine to a paracrine mechanism to stimulate growth of surrounding PDGF beta-receptor-positive mesenchymal stromal cells. Smooth muscle cells of the blood vessel intima also expressed the PDGF-A gene, the protein product of which is presumably targeted to the fibroblast-like cells of the mesenchymal stroma as these cells were the only ones expressing the PDGF alpha-receptor. PDGF-A expression was also detected in columnar cytotrophoblasts where it may have a potential role in stimulating mesenchymal cell growth at the base of the growing placental villi. We discuss the possibility that the regulation of the PDGF-B and beta-receptor gene expression might represent the potential targets for primary angiogenic factors.


RSC Advances ◽  
2021 ◽  
Vol 11 (50) ◽  
pp. 31783-31790
Author(s):  
Mei-Xi Li ◽  
Lei Li ◽  
Si-Yuan Zhou ◽  
Jian-Hua Cao ◽  
Wei-Hua Liang ◽  
...  

To mimic blood vessels, a polycaprolactone tubular scaffold was prepared via electrospinning and winding. Endothelial cells were cultured on the inner layer with axial nanofibers and smooth muscle cells were cultured on the outer layer with circumferential nanofibers.


2018 ◽  
Vol 88 (5-6) ◽  
pp. 309-318
Author(s):  
Hae Seong Song ◽  
Jung-Eun Kwon ◽  
Hyun Jin Baek ◽  
Chang Won Kim ◽  
Hyelin Jeon ◽  
...  

Abstract. Sorghum bicolor L. Moench is widely grown all over the world for food and feed. The effects of sorghum extracts on general inflammation have been previously studied, but its anti-vascular inflammatory effects are unknown. Therefore, this study investigated the anti-vascular inflammation effects of sorghum extract (SBE) and fermented extract of sorghum (fSBE) on human aortic smooth muscle cells (HASMCs). After the cytotoxicity test of the sorghum extract, a series of experiments were conducted. The inhibition effects of SBE and fSBE on the inflammatory response and adhesion molecule expression were measured using treatment with tumor necrosis factor-α (TNF-α), a crucial promoter for the development of atherosclerotic lesions, on HASMCs. After TNF-α (10 ng/mL) treatment for 2 h, then SBE and fSBE (100 and 200 μg/mL) were applied for 12h. Western blotting analysis showed that the expression of vascular cell adhesion molecule-1 (VCAM-1) (2.4-fold) and cyclooxygenase-2 (COX-2) (6.7-fold) decreased, and heme oxygenase-1 (HO-1) (3.5-fold) increased compared to the TNF-α control when treated with 200 μg/mL fSBE (P<0.05). In addition, the fSBE significantly increased the expression of HO-1 and significantly decreased the expression of VCAM-1 and COX-2 compared to the TNF-α control in mRNA level (P<0.05). These reasons of results might be due to the increased concentrations of procyanidin B1 (about 6-fold) and C1 (about 30-fold) produced through fermentation with Aspergillus oryzae NK for 48 h, at 37 °C. Overall, the results demonstrated that fSBE enhanced the inhibition of the inflammatory response and adherent molecule expression in HASMCs.


1994 ◽  
Vol 72 (01) ◽  
pp. 044-053 ◽  
Author(s):  
N Chomiki ◽  
M Henry ◽  
M C Alessi ◽  
F Anfosso ◽  
I Juhan-Vague

SummaryIndividuals with elevated levels of plasminogen activator inhibitor type 1 are at risk of developing atherosclerosis. The mechanisms leading to increased plasma PAI-1 concentrations are not well understood. The link observed between increased PAI-1 levels and insulin resistance has lead workers to investigate the effects of insulin or triglyceride rich lipoproteins on PAI-1 production by cultured hepatocytes or endothelial cells. However, little is known about the contribution of these cells to PAI-1 production in vivo. We have studied the expression of PAI-1 in human liver sections as well as in vessel walls from different territories, by immunocytochemistry and in situ hybridization.We have observed that normal liver endothelial cells expressed PAI-1 while parenchymal cells did not. However, this fact does not refute the role of parenchymal liver cells in pathological states.In healthy vessels, PAI-1 mRNA and protein were detected primarily at the endothelium from the lumen as well as from the vasa vasorum. In normal arteries, smooth muscle cells were able to produce PAI-1 depending on the territory tested. In deeply altered vessels, PAI-1 expression was observed in neovessels scattering the lesions, in some intimal cells and in smooth muscle cells. Local increase PAI-1 mRNA described in atherosclerotic lesions could be due to the abundant neovascularization present in the lesion as well as a raised expression in smooth muscle cells. The increased PAI-1 in atherosclerosis could lead to fibrin deposit during plaque rupture contributing further to the development and progression of the lesion.


1982 ◽  
Vol 48 (01) ◽  
pp. 101-103 ◽  
Author(s):  
B Kirchhof ◽  
J Grünwald

SummaryEndothelial and smooth muscle cells cultured from minipig aorta were examined for their inhibitory activity on thrombin and for their thrombin generating capacity.Endothelial cells showed both a thrombin inhibition and an activation of prothrombin in the presence of Ca++, which was enhanced in the presence of phospholipids. Smooth muscle cells showed an activation of prothrombin but at a lower rate. Both coagulation and amidolytic micro-assays were suitable for studying the thrombin-vessel wall interaction.


1985 ◽  
Vol 53 (02) ◽  
pp. 165-169 ◽  
Author(s):  
Walter E Laug

SummaryTPure cultures of bovine endothelial cells (EC) produce and secrete large amounts of plasminogen activators (PA). Cocultivation of EC with vascular smooth muscle cells (SMC) resulted in a significant decrease of PA activities secreted by the EC, whereas the cellular PA activities remained unaffected. Secreted PA activities were absent in the growth medium as long as the SMC to EC ratio was 2:1 or higher. The PA inhibitory activity of the SMC was rapid and cell-to-cell contact was not necessary.The PA inhibitory activity was present in homogenates of SMC as well as in the medium conditioned by them but not in the extracellular matrix elaborated by these cells. Serum free medium conditioned by SMC neutralized both tissue type (t-PA) and urokinase like (u-PA) plasminogen activators. Gel electrophoretic analysis of SMC conditioned medium followed by reverse fibrin autography demonstrated PA inhibitory activities in the molecular weight (Mr) range of 50,000 to 52,000 similar to those present in media conditioned by bovine endothelial cells or fibroblasts. Regular fibrin zymography of SMC conditioned medium incubated with u-PA or t-PA revealed the presence of a component with a calculated approximate Mr of 45,000 to 50,000 which formed SDS resistant complexes with both types of PA.These data demonstrate that vascular SMC produce and secrete (a) inhibitor(s) of PAs which may influence the fibrinolytic potential of EC.


1996 ◽  
Vol 16 (10) ◽  
pp. 1263-1268 ◽  
Author(s):  
Antonio López Farré ◽  
Juan R. Mosquera ◽  
Lourdes Sánchez de Miguel ◽  
Inmaculada Millás ◽  
Trinidad de Frutos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document