scholarly journals Abundance of the Na-K-2Cl cotransporter NKCC2 is increased by high-fat feeding in Fischer 344 X Brown Norway (F1) rats

2009 ◽  
Vol 296 (4) ◽  
pp. F762-F770 ◽  
Author(s):  
Shahla Riazi ◽  
Swasti Tiwari ◽  
Nikhil Sharma ◽  
Arjun Rash ◽  
C. M. Ecelbarger

Insulin resistance is associated with hypertension by mechanisms likely involving the kidney. To determine how the major apical sodium transporter of the thick ascending limb, the bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) is regulated by high-fat feeding, we treated young male, Fischer 344 X Brown Norway (F344BN) rats for 8 wk with diets containing either normal (NF, 4%) or high (HF, 36%) fat, by weight, primarily as lard. HF-fed rats had impaired glucose tolerance, increased urine excretion of 8-isoprostane (a marker of oxidative stress), increased protein levels for NKCC2 (50–125%) and the renal outer medullary potassium channel (106%), as well as increased natriuretic response to furosemide (20–40%). To test the role of oxidative stress in this response, in study 2, rats were fed the NF or HF diet plus plain drinking water, or water containing N G-nitro-l-arginine methyl ester (l-NAME), a nitric oxide synthase inhibitor (100 mg/l), or tempol, a superoxide dismutase mimetic (1 mmol/l). The combination of tempol with HF nullified the increase in medullary NKCC2, while l-NAME with HF led to the highest expression of medullary NKCC2 (to 498% of NF mean). However, neither of these drugs dramatically affected the elevated natriuretic response to furosemide with HF. Finally, l-NAME led to a marked increase in blood pressure (measured by radiotelemetry), which was significantly enhanced with HF. Mean arterial blood pressure at 7 wk was as follows (mmHg): NF, 100 ± 2; NF plus l-NAME, 122 ± 3; and HF plus l-NAME, 131 ± 2. Overall, HF feeding increased the abundance of NKCC2. Inappropriately high sodium reabsorption in the thick ascending limb via NKCC2 may contribute to hypertension with insulin resistance.

2016 ◽  
Vol 310 (9) ◽  
pp. F812-F820 ◽  
Author(s):  
Jonathan M. Nizar ◽  
Wuxing Dong ◽  
Robert B. McClellan ◽  
Mariana Labarca ◽  
Yuehan Zhou ◽  
...  

The majority of patients with obesity, insulin resistance, and metabolic syndrome have hypertension, but the mechanisms of hypertension are poorly understood. In these patients, impaired sodium excretion is critical for the genesis of Na+-sensitive hypertension, and prior studies have proposed a role for the epithelial Na+ channel (ENaC) in this syndrome. We characterized high fat-fed mice as a model in which to study the contribution of ENaC-mediated Na+ reabsorption in obesity and insulin resistance. High fat-fed mice demonstrated impaired Na+ excretion and elevated blood pressure, which was significantly higher on a high-Na+ diet compared with low fat-fed control mice. However, high fat-fed mice had no increase in ENaC activity as measured by Na+ transport across microperfused cortical collecting ducts, electrolyte excretion, or blood pressure. In addition, we found no difference in endogenous urinary aldosterone excretion between groups on a normal or high-Na+ diet. High fat-fed mice provide a model of metabolic syndrome, recapitulating obesity, insulin resistance, impaired natriuresis, and a Na+-sensitive elevation in blood pressure. Surprisingly, in contrast to previous studies, our data demonstrate that high fat feeding of mice impairs natriuresis and produces elevated blood pressure that is independent of ENaC activity and likely caused by increased Na+ reabsorption upstream of the aldosterone-sensitive distal nephron.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Naphatsanan Duansak ◽  
Pritsana Piyabhan ◽  
Umarat Srisawat ◽  
Jarinyaporn Naowaboot ◽  
Nusiri Lerdvuthisopon ◽  
...  

Background. Inflammation and hypertension are primary mechanisms involving in obesity-associated adverse effects of a high-fat diet. The aim of this study was to evaluate the effects of rice bran extract (RBE) on arterial blood pressure, hepatic steatosis, inflammation, and oxidative stress in high-fat diet (HFD)-induced obese mice. Methods. Male ICR mice were divided into four groups, including a normal-diet control group, a high-fat diet (HFD) (60% kcal from fat) group, an HFD group treated with RBE (220 mg/kg/day), and an HFD group treated with 1100 mg/kg/day for eight weeks. Besides body weight and arterial blood pressure, we determined liver values of total cholesterol, triglyceride, as well as percent body fat, tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), matrix metalloprotease-9 (MMP-9), cyclooxygenase-2 (COX-2), and mRNA endothelial nitric oxide synthase (eNOS). Results. The HFD group had increased body weight, increased systolic and diastolic blood pressure, liver total cholesterol, triglyceride, NF-κB, COX-2 and MMP-9 protein levels, and decreased mRNA eNOS in the aorta. Mice of the HFD group receiving RBE had reduced diastolic blood pressure, as well as significantly decreased liver and serum TNF-α and MDA levels in the liver, and reduced NF-κB levels in both the liver and heart. Conclusions. These results demonstrate that RBE decreases diastolic blood pressure, the liver lipid droplet accumulation, liver and myocardial NF-κB, myocardial COX-2 and MMP-9 protein levels, and oxidative stress. Moreover, RBE may improve endothelial function and may alleviate adverse health effects associated with obesity including obesity-associated hypertension.


Author(s):  
Nachimuthu Maithilikarpagaselvi ◽  
Magadi Gopalakrishna Sridhar ◽  
Rathinam Palamalai Swaminathan ◽  
Ramalingam Sripradha

Abstract: The present study investigated the beneficial effects of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed male Wistar rats.: Five-month-old male Wistar rats (n=20) were divided into two groups (10 rats in each group). Among the two groups, one group received 30 % high-fat diet (HFD) and another group received 30 % HFD with curcumin (200 mg/kg body weight). Food intake, body weight and biochemical parameters were measured at the beginning and at the end of the study. After 10 weeks, oxidative stress parameters in skeletal muscle and hepatic triacylglycerol (TAG) content were estimated. Histological examinations of the liver samples were performed at the end of the experiment.: High-fat feeding caused increase in body weight, liver and adipose tissue mass. Rats fed with HFD showed increased levels of fasting plasma glucose, insulin, Homeostasis Model Assessment for Insulin resistance (HOMA-IR), total cholesterol (TC), TAG, very low density lipoprotein cholesterol (VLDL-c) and decreased high-density lipoprotein cholesterol (HDL-c). There was also increase in the plasma inflammatory markers [tumor necrosis factor-α (TNF-α), C-reactive protein (CRP)] and skeletal muscle oxidative stress parameters [malondialdehyde (MDA), total oxidant status (TOS)] in these rats. In addition, high-fat feeding increased liver TAG content and caused fat accumulation in the liver. Treatment with curcumin significantly reduced body weight, relative organ weights (liver, adipose tissue), glucose, insulin and HOMA-IR. Curcumin supplementation decreased plasma levels of TC, TAG, VLDL-c, TNF-α and increased HDL-c. Administration of curcumin also reduced MDA, TOS in skeletal muscle, hepatic TAG content and liver fat deposition.: Curcumin supplementation improved HFD-induced dyslipidemia, oxidative stress, inflammation and insulin resistance.


1997 ◽  
Vol 272 (1) ◽  
pp. E147-E154 ◽  
Author(s):  
A. P. Rocchini ◽  
P. Marker ◽  
T. Cervenka

The current study evaluated both the time course of insulin resistance associated with feeding dogs a high-fat diet and the relationship between the development of insulin resistance and the increase in blood pressure that also occurs. Twelve adult mongrel dogs were chronically instrumented and randomly assigned to either a control diet group (n = 4) or a high-fat diet group (n = 8). Insulin resistance was assessed by a weekly, single-dose (2 mU.kg-1.min-1) euglycemic-hyperinsulinemic clamp on all dogs. Feeding dogs a high-fat diet was associated with a 3.7 +/- 0.5 kg increase in body weight, a 20 +/- 4 mmHg increase in mean blood pressure, a reduction in insulin-mediated glucose uptake [(in mumol-kg-1.min-1) decreasing from 72 +/- 6 before to 49 +/- 7 at 1 wk, 29 +/- 3 at 3 wk, and 30 +/- 2 at 6 wk of the high-fat diet, P < 0.01]. and a reduced insulin-mediated increase in cardiac output. In eight dogs (4 high fat and 4 control), the dose-response relationship of insulin-induced glucose uptake also was studied. The whole body glucose uptake dose-response curve was shifted to the right, and the rate of maximal whole body glucose uptake was significantly decreased (P < 0.001). Finally, we observed a direct relationship between the high-fat diet-induced weekly increase in mean arterial pressure and the degree to which insulin resistance developed. In summary, the current study documents that feeding dogs a high-fat diet causes the rapid development of insulin resistance that is the result of both a reduced sensitivity and a reduced responsiveness to insulin.


Neuroscience ◽  
2021 ◽  
Vol 461 ◽  
pp. 72-79
Author(s):  
Akira Mizoguchi ◽  
Ryoichi Banno ◽  
Runan Sun ◽  
Hiroshi Yaginuma ◽  
Keigo Taki ◽  
...  

2010 ◽  
Vol 299 (4) ◽  
pp. R1082-R1090 ◽  
Author(s):  
Jill K. Morris ◽  
Gregory L. Bomhoff ◽  
John A. Stanford ◽  
Paige C. Geiger

Despite numerous clinical studies supporting a link between type 2 diabetes (T2D) and Parkinson's disease (PD), the clinical literature remains equivocal. We, therefore, sought to address the relationship between insulin resistance and nigrostriatal dopamine (DA) in a preclinical animal model. High-fat feeding in rodents is an established model of insulin resistance, characterized by increased adiposity, systemic oxidative stress, and hyperglycemia. We subjected rats to a normal chow or high-fat diet for 5 wk before infusing 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. Our goal was to determine whether a high-fat diet and the resulting peripheral insulin resistance would exacerbate 6-OHDA-induced nigrostriatal DA depletion. Prior to 6-OHDA infusion, animals on the high-fat diet exhibited greater body weight, increased adiposity, and impaired glucose tolerance. Two weeks after 6-OHDA, locomotor activity was tested, and brain and muscle tissue was harvested. Locomotor activity did not differ between the groups nor did cholesterol levels or measures of muscle atrophy. High-fat-fed animals exhibited higher homeostatic model assessment of insulin resistance (HOMA-IR) values and attenuated insulin-stimulated glucose uptake in fast-twitch muscle, indicating decreased insulin sensitivity. Animals in the high-fat group also exhibited greater DA depletion in the substantia nigra and the striatum, which correlated with HOMA-IR and adiposity. Decreased phosphorylation of HSP27 and degradation of IκBα in the substantia nigra indicate increased tissue oxidative stress. These findings support the hypothesis that a diet high in fat and the resulting insulin resistance may lower the threshold for developing PD, at least following DA-specific toxin exposure.


2013 ◽  
Vol 41 (03) ◽  
pp. 487-502 ◽  
Author(s):  
Wei-Xi Cui ◽  
Jie Yang ◽  
Xiao-Qing Chen ◽  
Qian Mao ◽  
Xiang-Lan Wei ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) has become a major challenge to the healthcare system. This study was designed to evaluate the effect of the triterpenoid-rich fraction (TF) from Ilex hainanensis Merr. on NAFLD. Male Sprague-Dawley (SD) rats were fed a normal diet (control) or high fat diet (NAFLD model). After four weeks, the high fat diet group was orally administrated TF (250 mg/kg) for another two weeks. High fat diet fed rats displayed hyperlipidemia and a decline in liver function compared with control. However, administration with TF could effectively improve these symptoms, as demonstrated by decreasing the plasma levels of triglyceride (p <0.05), total cholesterol (p < 0.01), low-density lipoprotein cholesterol (p < 0.05), alanine transaminase (p < 0.05), aspartate aminotransferase (p < 0.01), liver index (p < 0.05) and insulin resistance index (p < 0.05) while increasing the high-density lipoprotein cholesterol (p < 0.05). Meanwhile, histopathological examination of livers also showed that TF could reduce the incidence of liver lesions induced by high fat diet. Furthermore, TF could alleviate oxidative stress and inflammation status indicated by the decline malondialdehyde and superoxide dismutase levels (p < 0.01, both) and levels of interleukin 6 and tumor necrosis factor-α (p < 0.05). In addition, immunohistochemistry showed TF evidently elevated the peroxisome proliferator-activated receptor (PPARα) expression (p < 0.01), while it diminished the Cytochrome P450 2E1 (CYP2E1) expression (p < 0.01) in liver. These results demonstrate that TF has potential ability to protect liver against NAFLD by regulating lipids metabolism and alleviating insulin resistance, inflammation and oxidative stress. This effect might be associated with regulating PPARα and CYP2E1 expression.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Ying Ge ◽  
Fan Fan ◽  
Sydney R Murphy ◽  
Jan Michael Williams ◽  
Ruisheng Liu ◽  
...  

Previous studies have indicated that a deficiency in the formation of 20-HETE in the proximal tubule and thick ascending limb of Henle in Dahl S rats increases sodium reabsorption and contributes to the development of hypertension. The present study examined whether the lack of 20-HETE production in the renal vasculature contributes to the progression of renal injury by altering the myogenic or tubuloglomerular feedback (TGF) response of the afferent arteriole (Af-Art). The production of 20-HETE was significantly lower by 54% in renal microvessels isolated from the kidneys of Dahl S rats versus that seen than in SS.5BN consomic strain in which chromosome 5 from the Brown Norway (BN) rat containing the CYP4A genes responsible for the formation of 20-HETE was transferred into the Dahl S genetic background. The luminal diameter of the Af-Art decreased by 14.7± 1.5% (from 20.5 ± 0.7 to 17.5 ± 0.8 μm, n=6) in SS.5BN rats whereas the diameter of the Af-Art remained unaltered in Dahl S rats (from 20.1 ± 0.6 to 21.7 ± 0.6 μm, n=7) when the perfusion pressure was increased from 60 mmHg to 120 mmHg. In other experiments, adenosine (1 μM) reduced the diameter of the Af-Art in the SS.5BN rats by 15±0.7% (from 20.1 ±0.4 to 17.1 ± 0.9 μm, n=3) whereas the Af-Art of Dahl S rats was unaltered. However, administration of a 20-HETE synthesis inhibitor, HET0016 (1 μM, n=6), or a selective 20-HETE antagonist, 6, 15-20-HEDE (10 μM, n=6) completely blocked the myogenic and adenosine responses in the Af-Art of SS.5BN rats but it had no effect in Dahl S rats. Administration of a 20-HETE agonist, 5, 14-20-HEDE (1 μM) restored the myogenic response (from 20.7 ± 0.7 to 17.6 ± 0.6 μm, n=7) and vasoconstrictor response to adenosine in the Af-Art of Dahl S rats. These studies confirm the key role of 20-HETE in modulating the responsiveness of the Af-Art and indicate that a deficiency in the formation of 20-HETE in renal microvessels contributes to the marked susceptibility of Dahl S rats to develop hypertension induced renal injury.


Sign in / Sign up

Export Citation Format

Share Document