scholarly journals The Effect of Rice Bran Extract on Arterial Blood Pressure, Hepatic Steatosis, and Inflammation in Mice Fed with a High-Fat Diet

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Naphatsanan Duansak ◽  
Pritsana Piyabhan ◽  
Umarat Srisawat ◽  
Jarinyaporn Naowaboot ◽  
Nusiri Lerdvuthisopon ◽  
...  

Background. Inflammation and hypertension are primary mechanisms involving in obesity-associated adverse effects of a high-fat diet. The aim of this study was to evaluate the effects of rice bran extract (RBE) on arterial blood pressure, hepatic steatosis, inflammation, and oxidative stress in high-fat diet (HFD)-induced obese mice. Methods. Male ICR mice were divided into four groups, including a normal-diet control group, a high-fat diet (HFD) (60% kcal from fat) group, an HFD group treated with RBE (220 mg/kg/day), and an HFD group treated with 1100 mg/kg/day for eight weeks. Besides body weight and arterial blood pressure, we determined liver values of total cholesterol, triglyceride, as well as percent body fat, tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), matrix metalloprotease-9 (MMP-9), cyclooxygenase-2 (COX-2), and mRNA endothelial nitric oxide synthase (eNOS). Results. The HFD group had increased body weight, increased systolic and diastolic blood pressure, liver total cholesterol, triglyceride, NF-κB, COX-2 and MMP-9 protein levels, and decreased mRNA eNOS in the aorta. Mice of the HFD group receiving RBE had reduced diastolic blood pressure, as well as significantly decreased liver and serum TNF-α and MDA levels in the liver, and reduced NF-κB levels in both the liver and heart. Conclusions. These results demonstrate that RBE decreases diastolic blood pressure, the liver lipid droplet accumulation, liver and myocardial NF-κB, myocardial COX-2 and MMP-9 protein levels, and oxidative stress. Moreover, RBE may improve endothelial function and may alleviate adverse health effects associated with obesity including obesity-associated hypertension.

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Kaixiang Xu ◽  
Xiaohong Zang ◽  
Mian Peng ◽  
Qian Zhao ◽  
Binbin Lin

Background. Magnesium lithospermate B (MLB) was shown to suppress oxidative stress and reduce hypertension, but the role of MLB in pregnancy-induced hypertension (PIH) remains unknown. The objective of this study was to demonstrate the effects of MLB on rats with PIH. Methods. A total of 40 pregnant SD rats were selected, and 30 rats were orally given NG-nitro-L-arginine methyl ester (L-NAME, 60 mg/kg/day) to establish PIH rat models. Rats were equally divided into four groups: control, PIH, 5 mg/kg MLB, and 10 mg/kg MLB. MLB was consecutively administered into PIH rats for one week. The effects of MLB on mean arterial blood pressure (MAP), urine protein level, inflammation, and oxidative stress together with angiogenesis were analyzed. Results. MLB prevented the elevation in MAP and urine protein levels induced by L-NAME. The activities of inflammatory cytokines were highly increased in serum and placental tissues of PIH rats, while cotreatment with MLB partially reversed the activities of these cytokines. MLB also recovered the expression of reactive oxygen species (ROS) in plasma of PIH rats together with levels of oxidative stress and antioxidant capacity in the placenta of PIH rats. The decreased expressions of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), and NO observed in PIH rats were increased by MLB. In addition, 10 mg/kg MLB exhibited higher protective effects as compared to lower doses of 5 mg/kg. Conclusion. This study demonstrated that pretreatment with MLB decreased MAP, inflammation, and oxidative stress in rats with gestational hypertension.


2019 ◽  
Vol 49 (4) ◽  
pp. 600-616
Author(s):  
Fatima Bensalah ◽  
Nour el Imane Harrat ◽  
Fouad Affane ◽  
Hadjera Chekkal ◽  
Myriem Lamri-Senhadji

Purpose The purpose of this study was to determine the effects of whole oat, oat bran and refined oat incorporation in a high-fat diet (HFD) on cardio-metabolic risk biomarkers in rats with type 2 diabetes mellitus (T2DM). Design/methodology/approach T2DM was induced by feeding male rats with an HFD for 10 weeks, followed by a low dose of streptozotocin. T2DM rats were then divided into four homogeneous groups. Three groups consumed an HFD containing 45 per cent (g/100 g diet) whole oat, oat bran or refined oat. The fourth untreated group (control) received the HFD. Findings The results showed that whole oat and oat bran, compared with refined oat and control, effectively reduced food intake (p < 0.007), arterial blood pressure (p = 0.0001), glycemia (p < 0.001), insulinemia (p < 0.01), glycosylated haemoglobin (p < 0.001) as well as homeostasis insulin resistance (HOMA-IR) (p < 0.001). They also improved blood lipid levels and reverse cholesterol transport by reducing serum total cholesterol (p = 0.0001), triacylglycerols (p < 0.05), very-low- (p = 0.0001) and low-density lipoproteins cholesterol contents (p < 0.02) increasing lipids (p < 0.002) and cholesterol excretion (p = 0.0001), and high-density lipoprotein cholesteryl esters (HDL2-CE) concentrations (p = 0.0001) and stimulating lecithin: cholesterol acyltransferase (LCAT) activity (p = 0.0001). Moreover, they attenuated lipid peroxidation by increasing paraoxonase-1 (PON-1) atheroprotective activity (p < 0.05). Originality/value In T2DM rats, whole oat and particularly, its bran incorporated into an HFD improves arterial blood pressure, glycemic balance and lipid metabolic pathway by reducing hypertriglyceridemia and hypercholesterolemia and increasing atheroprotective activities of LCAT and PON-1. In contrast, refined oat accentuates the risk factors associated with diabetes.


2021 ◽  
Author(s):  
Patoomporn Prasatthong ◽  
Sariya Meephat ◽  
Siwayu Rattanakanokchai ◽  
Juthamas Khamseekaew ◽  
Sarawoot Bunbupha ◽  
...  

Abstract Background: Rats fed with a high-fat diet exerts signs of cardiometabolic disorders. Galangin is a natural flavonoid mainly isolated from honey and Alpinia officinarum Hance and has various biological activities. This study evaluated whether galangin could alleviate cardiometabolic disorders, inflammation and oxidative stress in a high-fat diet fed rats. Methods: Male Sprague-Dawley rats were fed with a high-fat diet plus 15% fructose in drinking water for 4 months to induced signs of metabolic syndrome (MS), and they were treated with galangin at a dose 25 or 50 mg/kg or metformin at a dose 100 mg/kg or vehicle for the last four weeks. All data were expressed as mean ± S.E.M. Data were analyzed by one-way analysis of variance followed by Tukey’s post-hoc test for multiple comparisons analysis.Results: Rats fed with a high-fat diet had impaired glucose tolerance, insulin resistance, hyperglycemia, hypertrophy of adipocytes, impaired liver function and hypertension. These signs of MS were alleviated by galangin or metformin treatment (p<0.05). Galangin or metformin alleviated cardiac dysfunction and remodeling induced by a high-fat diet in rats (p<0.05). Tumor necrosis factor-α and interleukin-6 concentrations and expression were high in plasma and cardiac tissue in MS rats, and these inflammatory markers were suppressed by galangin or metformin treatment (p<0.05). Galangin alleviated a high-fat diet induced low levels of adiponectin in rats. Galangin or metformin decreased oxidative stress biomarkers, aortic superoxide generation and plasma and cardiac MDA levels, and raised endogenous antioxidant enzume activities, catalase, and superoxide dismutase, in MS rats (p<0.05). Downregulation of adiponectin receptor1 (AdipoR1) and cyclooxygenase-2 (COX-2) as well as upregulation of nuclear factor kappa B (NF-κB) expression were observed in MS rats. These alterations of protein expressions were recovered in MS rats treated with galangin or metformin. Conclusions: Galangin reduced cardiometabolic disorders in high-fat diet induced MS rats. The underlying mechanisms might be relevant to suppression of inflammation and oxidative stress and restoration of AdipoR1/COX-2/NF-κB expression.


2020 ◽  
Vol 2020 ◽  
pp. 1-1
Author(s):  
Naphatsanan Duansak ◽  
Pritsana Piyabhan ◽  
Umarat Srisawat ◽  
Jarinyaporn Naowaboot ◽  
Nusiri Lerdvuthisopon ◽  
...  


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Barbara Pereira da Silva ◽  
Marcella Duarte Villas Mishima ◽  
Renata Celi Lopes Toledo ◽  
Maria Eliza de Castro Moreira ◽  
Neuza Costa ◽  
...  

Abstract Objectives The objective is to investigate the influence of chia consumption on inflammation, oxidative stress, and blood lipid profile in adult female ovariectomized Wistar rats fed high-fat diet Methods Forty ovariectomized and 40 intact (SHAM) rats were allocated into 8 groups (n = 10), and received one of the following four diets: standard diet (ST); standard diet + chia (STC); high-fat diet (HF); high-fat diet + chia (HFC) during 126 days. Biochemical parameters and biomarkers of lipid peroxidation, inflammation, and oxidative stress were evaluated. The mRNA expression of proteins involved in inflammation such as PPAR-α, NFκB, TNF-α and Zn-SOD1 were analyzed, as well as TNF-α and IL-1β levels. The results were subjected to ANOVA at 5% probability. Post hoc Duncan test was carried out to compare means among the groups. Test-t was used to compare the same diet group with ovariectomy or not. Results Chia intake increased HDL-c and reduced LDL-c levels. Among the ovariectomized groups, the animals fed chia showed higher SOD mRNA expression and activity. The consumption of the HF did not alter the total antioxidant capacity. In addition, chia consumption did not improve this parameter. Nevertheless, plasma catalase concentration was higher in STC group. MDA concentration was higher in all groups fed HF. PPAR-α mRNA expression was higher in the STC group. Besides, high fat diet consumption was able to reduce the PPAR-α mRNA expression. The NFκB mRNA expression were lower in STC groups. However, mRNA expression and the protein levels of TNF-α were lower in the rats fed standard diet. Nevertheless, the protein levels of IL-1β were lower in the rats fed standard diet and high fat diet with chia. Conclusions In general, ovariectomy did not influence inflammatory and oxidative stress parameters. Chia intake during 126 days was able to improve antioxidant activity, increasing SOD expression, PPAR-α expression, catalase concentration, and HDL-c levels in adults female rats submitted or not to ovariectomy and fed a standard or a high-fat diet. In addition, chia consumption decrease inflammatory markes, IL-1β and LDL-c concentration. Funding Sources Foundation for Research Support of Minas Gerais (FAPEMIG, Brazil); Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil), and the National Counsel of Technological and Scientific Development (CNPq, Brazil). Supporting Tables, Images and/or Graphs


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 769
Author(s):  
Patoomporn Prasatthong ◽  
Sariya Meephat ◽  
Siwayu Rattanakanokchai ◽  
Juthamas Khamseekaew ◽  
Sarawoot Bunbupha ◽  
...  

Galangin is a natural flavonoid. In this study, we evaluated whether galangin could alleviate signs of metabolic syndrome (MS) and cardiac abnormalities in rats receiving a high-fat (HF) diet. Male Sprague–Dawley rats were given an HF diet plus 15% fructose for four months, and they were fed with galangin (25 or 50 mg/kg), metformin (100 mg/kg), or a vehicle for the last four weeks. The MS rats exhibited signs of MS, hypertrophy of adipocytes, impaired liver function, and cardiac dysfunction and remodeling. These abnormalities were alleviated by galangin (p < 0.05). Interleukin-6 and tumor necrosis factor-α concentrations and expression were high in the plasma and cardiac tissue in the MS rats, and these markers were suppressed by galangin (p < 0.05). These treatments also alleviated the low levels of adiponectin and oxidative stress induced by an HF diet in rats. The downregulation of adiponectin receptor 1 (AdipoR1) and cyclooxygenase-2 (COX-2) and the upregulation of nuclear factor kappa B (NF-κB) expression were recovered in the galangin-treated groups. Metformin produced similar effects to galangin. In conclusion, galangin reduced cardiometabolic disorders in MS rats. These effects might be linked to the suppression of inflammation and oxidative stress and the restoration of AdipoR1, COX-2, and NF-κB expression.


1996 ◽  
Vol 30 (6) ◽  
pp. 578-582 ◽  
Author(s):  
Neal R Cutler ◽  
John J Sramek ◽  
Azucena Luna ◽  
Ismael Mena ◽  
Eric P Brass ◽  
...  

Objective To assess the effect of the angiotensin-converting enzyme inhibitor ceronapril on cerebral blood flow (CBF) in patients with moderate hypertension. Design Patients received chlorthalidone 25 mg for 4 weeks, and if diastolic blood pressure remained in the range of 100–115 mm Hg, they were given titrated doses of ceronapril (10–40 mg/d based on blood pressure response) in addition to chlorthalidone for 9 weeks. Setting Outpatient research clinic. Subjects Eligible patients had moderate essential hypertension (diastolic blood pressure 100–115 mm Hg) assessed when the patients were receiving no medications. Thirteen patients were entered into the study; 1 withdrew for reasons unrelated to the study drug. Twelve patients (11 men, 1 woman; mean age 52 y) completed the study. Intervention Ceronapril, given with chlorthalidone. Main Outcome Measures CBF measurements were taken at the start and end of ceronapril therapy using intravenous 133Xe; blood pressures were determined weekly. Results Mean arterial blood pressure decreased from 130 ± 4 to 120 ±7 mm Hg after 4 weeks of chlorthalidone administration, and fell further to 108 ± 8 mm Hg after an additional 9 weeks of combined chlorthalidone-ceronapril therapy (p < 0.05). CBF fell from 44 ± 15 to 34 ± 5 mL/min/100 g during the 9 weeks of combined therapy (p = 0.05). No adverse effects consistent with decreased CBF were observed. The decrease in CBF was not linearly correlated with the change in systemic blood pressure, but was strongly correlated (r = –0.937; p < 0.001) with the initial CBF. Conclusions The decrease in mean arterial blood pressure was not associated with a decrease in CBF. Patients with high CBF may be predisposed to a decrease in CBF when treated with ceronapril and chlorthalidone.


2009 ◽  
Vol 57 (13) ◽  
pp. 5925-5932 ◽  
Author(s):  
Ming-Cheng Lin ◽  
Shao-Hsuan Kao ◽  
Pei-Jun Chung ◽  
Kuei-Chuan Chan ◽  
Mon-Yuan Yang ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2202
Author(s):  
Micaelle Oliveira de Luna Freire ◽  
Luciana Caroline Paulino do Nascimento ◽  
Kataryne Árabe Rimá de Oliveira ◽  
Alisson Macário de Oliveira ◽  
Thiago Henrique Napoleão ◽  
...  

High-fat diet (HFD) consumption has been linked to dyslipidemia, low-grade inflammation and oxidative stress. This study investigated the effects of a mixed formulation with Limosilactobacillusfermentum 139, L. fermentum 263 and L. fermentum 296 on cardiometabolic parameters, fecal short-chain fatty acid (SCFA) contents and biomarkers of inflammation and oxidative stress in colon and heart tissues of male rats fed an HFD. Male Wistar rats were grouped into control diet (CTL, n = 6), HFD (n = 6) and HFD with L. fermentum formulation (HFD-Lf, n = 6) groups. The L.fermentum formulation (1 × 109 CFU/mL of each strain) was administered twice a day for 4 weeks. After a 4-week follow-up, biochemical parameters, fecal SCFA, cytokines and oxidative stress variables were evaluated. HFD consumption caused hyperlipidemia, hyperglycemia, low-grade inflammation, reduced fecal acetate and propionate contents and increased biomarkers of oxidative stress in colon and heart tissues when compared to the CTL group. Rats receiving the L. fermentum formulation had reduced hyperlipidemia and hyperglycemia, but similar SCFA contents in comparison with the HFD group (p < 0.05). Rats receiving the L. fermentum formulation had increased antioxidant capacity throughout the colon and heart tissues when compared with the control group. Administration of a mixed L. fermentum formulation prevented hyperlipidemia, inflammation and oxidative stress in colon and heart tissues induced by HFD consumption.


Sign in / Sign up

Export Citation Format

Share Document