Circulation in exercising dogs

1964 ◽  
Vol 19 (1) ◽  
pp. 29-32 ◽  
Author(s):  
P. Cerretelli ◽  
J. Piiper ◽  
F. Mangili ◽  
F. Cuttica ◽  
B. Ricci

The adjustments of the cardiovascular system to muscular exercise were studied in dogs running on a treadmill at different speeds and at the incline of +10%. The cardiac output, measured by the thermodilution method, increased with increasing O2 consumption, reaching 520 ml/kg min at an O2 consumption of 70 ml/kg min. At still higher metabolic levels the cardiac output remained constant and the O2 consumption increased by an increase of the arteriovenous O2 difference only, which was calculated to attain 17 vol % at the highest O2 consumption value reached in this study, 90 ml/kg min. The increase of the cardiac output was mainly due to increase of the heart rate, whereas the average maximum increment of the stroke volume was about 30% only. The mean arterial and the central venous blood pressures increased with exercise. The time course of the adjustment of the cardiac output was measured after the exercise of varied intensity had been abruptly begun or stopped. Both for start and recovery the “half reaction time” was about 20 sec; after 1 min no further measurable change of the cardiac output was detectable. cardiac output and O2 consumption at increasing metabolic levels; heart rate and stroke volume in running dogs recovery following exercise Submitted on July 15, 1963

1987 ◽  
Vol 253 (5) ◽  
pp. R779-R785
Author(s):  
B. T. Engel ◽  
M. I. Talan

Heart rate, stroke volume, and intra-arterial blood pressures were monitored continuously in each of four monkeys for 18 consecutive hours, 5 days/wk, for several weeks. Mean heart rate, stroke volume, cardiac output, systolic and diastolic pressure, and total peripheral resistance were calculated each minute, and these averages were analyzed further to yield hourly means and intercorrelations. The main findings from the analyses of mean levels were that cardiac output fell throughout the night and that peripheral resistance rose during the same interval so that arterial pressure fell only slightly; the highest levels of peripheral resistance and lowest levels of cardiac output were recorded between 0500 and 0700. Furthermore, the levels of these responses during the remainder of the morning were higher (peripheral resistance) and lower (cardiac output) than those recorded in the evening.


1992 ◽  
Vol 165 (1) ◽  
pp. 161-180 ◽  
Author(s):  
G. L. Kooyman ◽  
P. J. Ponganis ◽  
M. A. Castellini ◽  
E. P. Ponganis ◽  
K. V. Ponganis ◽  
...  

Heart rate during overnight rest and while diving were recorded from five emperor penguins with a microprocessor-controlled submersible recorder. Heart rate, cardiac output and stroke volume were also measured in two resting emperor penguins using standard electrocardiography and thermodilution measurements. Swim velocities from eight birds were obtained with the submersible recorder. The resting average of the mean heart rates was 72 beats min-1. Diving heart rates were about 15% lower than resting rates. Cardiac outputs of 1.9-2.9 ml kg-1 s-1 and stroke volumes of 1.6-2.7 ml kg-1 were similar to values recorded from mammals of the same body mass. Swim velocities averaged 3 m s-1. The swim speeds and heart rates suggest that muscle O2 depletion must occur frequently: therefore, many dives require a significant energy contribution from anaerobic glycolysis.


Author(s):  
Laura D’Orsi ◽  
Luciano Curcio ◽  
Fabio Cibella ◽  
Alessandro Borri ◽  
Lilach Gavish ◽  
...  

Abstract A variety of mathematical models of the cardiovascular system have been suggested over several years in order to describe the time-course of a series of physiological variables (i.e. heart rate, cardiac output, arterial pressure) relevant for the compensation mechanisms to perturbations, such as severe haemorrhage. The current study provides a simple but realistic mathematical description of cardiovascular dynamics that may be useful in the assessment and prognosis of hemorrhagic shock. The present work proposes a first version of a differential-algebraic equations model, the model dynamical ODE model for haemorrhage (dODEg). The model consists of 10 differential and 14 algebraic equations, incorporating 61 model parameters. This model is capable of replicating the changes in heart rate, mean arterial pressure and cardiac output after the onset of bleeding observed in four experimental animal preparations and fits well to the experimental data. By predicting the time-course of the physiological response after haemorrhage, the dODEg model presented here may be of significant value for the quantitative assessment of conventional or novel therapeutic regimens. The model may be applied to the prediction of survivability and to the determination of the urgency of evacuation towards definitive surgical treatment in the operational setting.


1967 ◽  
Vol 46 (2) ◽  
pp. 307-315 ◽  
Author(s):  
E. DON STEVENS ◽  
D. J. RANDALL

1. Changes in blood pressure in the dorsal aorta, ventral aorta and subintestinal vein, as well as changes in heart rate and breathing rate during moderate swimming activity in the rainbow trout are reported. 2. Blood pressures both afferent and efferent to the gills increased during swimming and then returned to normal levels within 30 min. after exercise. 3. Venous blood pressure was characterized by periodic increases during swimming. The pressure changes were not in phase with the body movements. 4. Although total venous return to the heart increased during swimming, a decreased blood flow was recorded in the subintestinal vein. 5. Heart rate and breathing rate increased during swimming and then decreased when swimming ceased. 6. Some possible mechanisms regulating heart and breathing rates are discussed.


1989 ◽  
Vol 66 (2) ◽  
pp. 949-954 ◽  
Author(s):  
A. M. Rivera ◽  
A. E. Pels ◽  
S. P. Sady ◽  
M. A. Sady ◽  
E. M. Cullinane ◽  
...  

We examined the hemodynamic factors associated with the lower maximal O2 consumption (VO2max) in older formerly elite distance runners. Heart rate and VO2 were measured during submaximal and maximal treadmill exercise in 11 master [66 +/- 8 (SD) yr] and 11 young (32 +/- 5 yr) male runners. Cardiac output was determined using acetylene rebreathing at 30, 50, 70, and 85% VO2max. Maximal cardiac output was estimated using submaximal stroke volume and maximal heart rate. VO2max was 36% lower in master runners (45.0 +/- 6.9 vs. 70.4 +/- 8.0 ml.kg-1.min-1, P less than or equal to 0.05), because of both a lower maximal cardiac output (18.2 +/- 3.5 vs. 25.4 +/- 1.7 l.min-1) and arteriovenous O2 difference (16.6 +/- 1.6 vs. 18.7 +/- 1.4 ml O2.100 ml blood-1, P less than or equal to 0.05). Reduced maximal heart rate (154.4 +/- 17.4 vs. 185 +/- 5.8 beats.min-1) and stroke volume (117.1 +/- 16.1 vs. 137.2 +/- 8.7 ml.beat-1) contributed to the lower cardiac output in the older athletes (P less than or equal 0.05). These data indicate that VO2max is lower in master runners because of a diminished capacity to deliver and extract O2 during exercise.


2021 ◽  
Author(s):  
Daniel Yazdi ◽  
Sarin Patel ◽  
Suriya Sridaran ◽  
Evan Wilson ◽  
Sarah Smith ◽  
...  

AbstractBackgroundObjective markers of cardiac function are limited in the outpatient setting and may be beneficial for monitoring patients with chronic cardiac conditions.ObjectiveWe assess the accuracy of a scale, with the ability to capture ballistocardiography, electrocardiography, and impedance plethysmography signals from a patient’s feet while standing on the scale, in measuring stroke volume and cardiac output compared to the gold-standard direct Fick method.MethodsThirty-two patients with unexplained dyspnea undergoing level 3 invasive cardiopulmonary exercise test at a tertiary medical center were included in the final analysis. We obtained scale and direct Fick measurements of stroke volume and cardiac output before and immediately after invasive cardiopulmonary exercise test.ResultsStroke volume and cardiac output from a cardiac scale and the direct Fick method correlated with r = 0.81 and r = 0.85, respectively (P < 0.001 each). The mean absolute error of the scale estimated stroke volume was -1.58 mL, with a 95% limits of agreement (LOA) of -21.97 mL to 18.81 mL. The mean error for the scale estimated cardiac output was -0.31 L/min, with a 95% LOA of -2.62 L/min to 2.00 L/min. The change in stroke volume and cardiac output before and after exercise were 78.9% and 96.7% concordant, respectively between the two measuring methods.ConclusionsThis novel scale with cardiac monitoring abilities may allow for non-invasive, longitudinal measures of cardiac function. Using the widely accepted form factor of a bathroom scale, this method of monitoring can be easily integrated into a patient’s lifestyle.


1983 ◽  
Vol 104 (1) ◽  
pp. 193-201 ◽  
Author(s):  
B. Grubb ◽  
D. D. Jorgensen ◽  
M. Conner

Cardiovascular variables were studied as a function of oxygen consumption in the emu, a large, flightless ratite bird well suited to treadmill exercise. At the highest level of exercise, the birds' rate of oxygen consumption (VO2) was approximately 11.4 times the resting level (4.2 ml kg-1 min-1). Cardiac output was linearly related to VO2, increasing 9.5 ml for each 1 ml increase in oxygen consumption. The increase in cardiac output is similar to that in other birds, but appears to be larger than in mammals. The venous oxygen content dropped during exercise, thus increasing the arteriovenous oxygen content difference. At the highest levels of exercise, heart rate showed a 3.9-fold increase over the resting rate (45.8 beats min-1). The mean resting specific stroke volume was 1.5 ml per kg body mass, which is larger than shown by most mammals. However, birds have larger hearts relative to body mass than do mammals, and stroke volume expressed per gram of heart (0.18 ml g-1) is similar to that for mammals. Stroke volume showed a 1.8-fold increase as a result of exercise in the emus, but a change in heart rate plays a greater role in increasing cardiac output during exercise.


2010 ◽  
Vol 25 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Donald U Robertson ◽  
Lynda Federoff ◽  
Keith E Eisensmith

Heart rate, heart rate variability, stroke volume, and cardiac output were measured while six college students and six professionals played trumpet. One-minute rest periods were followed by 1 minute of playing exercises designed to assess the effects of pitch and articulation. Heart rate and heart rate variability increased during playing, but stroke volume decreased. Changes in heart rate between resting and playing were greater for students, although beat-to-beat variability was larger for professionals in the upper register. These results suggest that expertise is characterized by greater physiological efficiency.


2011 ◽  
pp. 42-47
Author(s):  
James R. Munis

We've already looked at 2 types of pressure that affect physiology (atmospheric and hydrostatic pressure). Now let's consider the third: vascular pressures that result from mechanical events in the cardiovascular system. As you already know, cardiac output can be defined as the product of heart rate times stroke volume. Heart rate is self-explanatory. Stroke volume is determined by 3 factors—preload, afterload, and inotropy—and these determinants are in turn dependent on how the left ventricle handles pressure. In a pressure-volume loop, ‘afterload’ is represented by the pressure at the end of isovolumic contraction—just when the aortic valve opens (because the ventricular pressure is now higher than aortic root pressure). These loops not only are straightforward but are easier to construct just by thinking them through, rather than by memorization.


2006 ◽  
Vol 15 (6) ◽  
pp. 580-593 ◽  
Author(s):  
Susan K. Frazier ◽  
Kathleen S. Stone ◽  
Debra Moser ◽  
Rebecca Schlanger ◽  
Carolyn Carle ◽  
...  

• Background Cardiac dysfunction can prevent successful discontinuation of mechanical ventilation. Critically ill patients may have undetected cardiac disease, and cardiac dysfunction can be produced or exacerbated by underlying pathophysiology. • Objective To describe and compare hemodynamic function and cardiac rhythm during baseline mechanical ventilation with function and rhythm during a trial of continuous positive airway pressure in medical intensive care patients. • Methods A convenience sample of 43 patients (53% men; mean age 51.1 years) who required mechanical ventilation were recruited for this pilot study. Cardiac output, stroke volume, arterial blood pressure, heart rate, cardiac rhythm, and plasma catecholamine levels were measured during mechanical ventilation and during a trial of continuous positive airway pressure. • Results One third of the patients had difficulty discontinuing mechanical ventilation. Successful patients had significantly increased cardiac output and stroke volume without changes in heart rate or arterial pressure during the trial of continuous positive airway pressure. Unsuccessful patients had no significant changes in cardiac output, stroke volume, or heart rate but had a significant increase in mean arterial pressure. The 2 groups of patients also had different patterns in ectopy. Concurrently, catecholamine concentrations decreased in the successful patients and significantly increased in the unsuccessful patients during the trial. • Conclusions Patterns of cardiac function and plasma catecholamine levels differed between patients who did or did not achieve spontaneous ventilation with a trial of continuous positive airway pressure. Cardiac function must be systematically considered before and during the return to spontaneous ventilation to optimize the likelihood of success.


Sign in / Sign up

Export Citation Format

Share Document