Pulsating bubble technique for evaluating pulmonary surfactant

1977 ◽  
Vol 43 (2) ◽  
pp. 198-203 ◽  
Author(s):  
G. Enhorning

Surface tension is determined with an apparatus which records pressure across the surface of a bubble, expanded in the sample liquid and communicating with ambient air. The disposable sample chamber, with a volume of 20 microliter, communicates with a pulsator and a pressure transducer. The volume displacement of the pulsator's moving piston is hydraulically geared down 1,000 times, which gives the pulsator a stroke volume of 0.43 microliter. When this volume is moving into the sample chamber, it causes the bubble radius to change from a maximum of 0.55 mm, accurately measured through a microscope, to a minimum of 0.4 mm. The pulsator speed is usually 20 rpm, but it can be changed from 0.02 to 80 rpm. From the known pressure gradient across bubble surface, and bubble radius, surface tension is calculated with the law of Laplace.

CHEST Journal ◽  
1970 ◽  
Vol 57 (3) ◽  
pp. 263-265 ◽  
Author(s):  
Jerome H. Modell ◽  
Frank Gollan ◽  
Samuel T. Giammona ◽  
Donald Parker

PEDIATRICS ◽  
1973 ◽  
Vol 51 (4) ◽  
pp. 655-659
Author(s):  
Robert V. Kotas

Intrauterine inoculation of Staphylococcus aureus into 24-day rabbit fetuses resulted in changes in lung maturation at 27 days comparable to those seen after glucocorticoid injection. The lungs of infected litters had increased low pressure stability and distensibility with decreased surface tension upon compression, and resembled 29- to 30-day control lungs. Although intrauterine infection is found to be harmful to the fetus, it may have a secondary effect of preparing a fetus for premature air breathing.


2010 ◽  
Vol 3 (3) ◽  
pp. 545-555 ◽  
Author(s):  
M. Cazorla ◽  
W. H. Brune

Abstract. A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS), measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 450 ◽  
Author(s):  
Gahee Kim ◽  
Junhyun Choi ◽  
Sowon Choi ◽  
KyuHan Kim ◽  
Yosep Han ◽  
...  

Along with the accompanying theory article, we experimentally investigate the effect of the depletion attraction force on the flotation of malachite. While varying the concentration of the depletion agent (polyethylene glycol), three different systems are studied: pure malachite, pure silica and a 1:1 mass ratio of malachite and silica binary system. We find that the recovery increases significantly as the concentration of the depletion reagents increases for all three systems. However, the recovery suddenly decreases in a certain concentration range, which corresponds to the onset of the decreased surface tension when high concentrations of the depletion agent are used. The decreased surface tension of the air/water interface suggests that the recovery rate is lowered due to the adsorption of the depletion agent to the bubble surface, acting as a polymer brush. We also perform experiments in the presence of a small amount of a collector, sodium oleate. An extremely small amount of the collector (10−10–10−5 M) leads to the increase in the overall recovery, which eventually reaches nearly 100 percent. Nevertheless, the grade worsens as the depletant provides the force to silica particles as well as target malachite particles.


1968 ◽  
Vol 49 (3) ◽  
pp. 583-602
Author(s):  
G. M. HUGHES ◽  
C. M. BALLINTIJN

1. An account is given of the main skeletal elements and muscles involved in the respiratory movements of the dragonet, Callionymus lyra. 2. Using electromyographic techniques it has been shown that the muscles chiefly involved in rapid ejection of water out of the opercular slit are the adductor mandibulae, protractor hyoideus, and hyohyoideus. During the expansion phase of the cycle, which is about six times the duration of the contraction phase, the levator hyomandibulae and sternohyoideus are active, though in some cases the latter only comes in at higher levels of pumping. 3. Changes in volume flow across the gills have been produced by either (a) altering the hydrostatic pressure gradient (Δp) across the system, or (b) altering the oxygen or carbon dioxide content of the water inspired by the fish. With (a), the volume flow decreases linearly at a rate of about 30 ml./min./cm. H2O static pressure head until an inflexion is reached in the curve at which rate of flow decreases and is normally when Δp is zero. That the relative increase in flow rate with negative Δp's is due to the activity of the fish pumping against the adverse pressure gradient has been confirmed by electromyogram recordings during such experiments. With (b), it was possible to demonstrate a clear relationship between stroke volume and the level of electrical activity as measured by the height of the integrated electromyogram. The integrated EMG increases more than linearly with increasing stroke volume during PO2 changes, but this relationship seems to be more nearly linear during changes in CO2 concentration. 4. The respiratory frequency is scarcely affected by changes in flow produced by altering the hydrostatic pressure gradient, but following a decrease in PO2 or an increase in CO2 there is a significant fall in frequency which accompanies the increased electromyogram. The time course of these changes during recovery from a decrease in PO2 or an increase in PCOCO2 suggests that the gas tensions of the inspired water are detected by receptors on the gills and thus influence the electromyogram activity, but the frequency change observed is due to a change in the blood affecting receptors in the brain.


1989 ◽  
Vol 66 (5) ◽  
pp. 2039-2044 ◽  
Author(s):  
M. R. Mercurio ◽  
J. M. Fiascone ◽  
D. M. Lima ◽  
H. C. Jacobs

In vitro surface properties of pulmonary surfactant thought to be essential to its ability to increase pulmonary compliance include minimum surface tension less than 10 dyn/cm and large surface tension variability and hysteresis. We tested four surface-active agents (Tween 20, a detergent; and FC-100, FC-430, and FC-431, industrial fluorocarbons), all lacking these properties, for their ability to increase pulmonary compliance in surfactant-deficient premature rabbits. Fetal rabbits were delivered by cesarean section at 27 days (full term = 31 days) and injected via tracheostomy with 50% lactated Ringer solution, adult rabbit surfactant, or one of the four experimental agents. Dynamic compliance was measured using 1 h of mechanical ventilation followed by alveolar lavage. Each experimental agent produced a dynamic compliance significantly higher than 50% lactated Ringer solution and statistically equal to or greater than natural surfactant. Equilibrium surface tension of the agents and minimum and equilibrium surface tension of the alveolar washes each correlated with compliance (P less than 0.05). This suggests that some surface properties of pulmonary surfactant believed to be essential are not, although surface tension does seem to play a role in pulmonary compliance.


1998 ◽  
Vol 84 (1) ◽  
pp. 146-156 ◽  
Author(s):  
Olga V. Lopatko ◽  
Sandra Orgeig ◽  
Christopher B. Daniels ◽  
David Palmer

Lopatko, Olga V., Sandra Orgeig, Christopher B. Daniels, and David Palmer. Alterations in the surface properties of lung surfactant in the torpid marsupial Sminthopsis crassicaudata. J. Appl. Physiol. 84(1): 146–156, 1998.—Torpor changes the composition of pulmonary surfactant (PS) in the dunnart Sminthopsis crassicaudata [C. Langman, S. Orgeig, and C. B. Daniels. Am. J. Physiol. 271 ( Regulatory Integrative Comp. Physiol. 40): R437–R445, 1996]. Here we investigated the surface activity of PS in vitro. Five micrograms of phospholipid per centimeter squared surface area of whole lavage (from mice or from warm-active, 4-, or 8-h torpid dunnarts) were applied dropwise onto the subphase of a Wilhelmy-Langmuir balance at 20°C and stabilized for 20 min. After 4 h of torpor, the adsorption rate increased, and equilibrium surface tension (STeq), minimal surface tension (STmin), and the %area compression required to achieve STmin decreased, compared with the warm-active group. After 8 h of torpor, STmin decreased [from 5.2 ± 0.3 to 4.1 ± 0.3 (SE) mN/m]; %area compression required to achieve STmindecreased (from 43.4 ± 1.0 to 27.4 ± 0.8); the rate of adsorption decreased; and STeqincreased (from 26.3 ± 0.5 to 38.6 ± 1.3 mN/m). ST-area isotherms of warm-active dunnarts and mice at 20°C had a shoulder on compression and a plateau on expansion. These disappeared on the isotherms of torpid dunnarts. Samples of whole lavage (from warm-active and 8-h torpor groups) containing 100 μg phospholipid/ml were studied by using a captive-bubble surfactometer at 37°C. After 8 h of torpor, STmin increased (from 6.4 ± 0.3 to 9.1 ± 0.3 mN/m) and %area compression decreased in the 2nd (from 88.6 ± 1.7 to 82.1 ± 2.0) and 3rd (from 89.1 ± 0.8 to 84.9 ± 1.8) compression-expansion cycles, compared with warm-active dunnarts. ST-area isotherms of warm-active dunnarts at 37°C did not have a shoulder on compression. This shoulder appeared on the isotherms of torpid dunnarts. In conclusion, there is a strong correlation between in vitro changes in surface activity and in vivo changes in lipid composition of PS during torpor, although static lung compliance remained unchanged (see Langman et al. cited above). Surfactant from torpid animals is more active at 20°C and less active at 37°C than that of warm-active animals, which may represent a respiratory adaptation to low body temperatures of torpid dunnarts.


Author(s):  
Takanori Nakamura ◽  
Takatsugu Kameda ◽  
Shinsuke Mochizuki

Experiments were performed to investigate the effect of an adverse pressure gradient on the mean velocity and turbulent intensity profiles for an equilibrium boundary layer. The equilibrium boundary layer, which makes self-similar profiles, was constructed using a power law distribution of free stream velocity. The exponent of the law was adjusted to −0.188. The wall shear stress was measured with a drag balance by a floating element. The investigation of the law of the wall and the similarity of the streamwise turbulent intensity profile was made using both a friction velocity and new proposed velocity scale. The velocity scale is derived from the boundary layer equation. The mean velocity gradient profile normalized with the height and the new velocity scale exists the region where the value is almost constant. The turbulent intensity profiles normalized with the friction velocity strongly depend on the nondimensional pressure gradient near the wall. However, by mean of the local velocity scale, the profiles might be achieved to be similar with that of a zero pressure gradient.


Sign in / Sign up

Export Citation Format

Share Document