Single-breath diffusing capacity and lung volumes in small laboratory mammals

1980 ◽  
Vol 48 (6) ◽  
pp. 1052-1059 ◽  
Author(s):  
J. Takezawa ◽  
F. J. Miller ◽  
J. J. O'Neil

We measured the single-breath diffusing capacity for carbon monoxide (DLCO), total lung capacity (TLC), functional residual capacity (FRC), and residual volume (RV) in anesthetized male hamsters, rats, guinea pigs, and rabbits whose weights varied from 40 to 3,500 g. TLC (defined as an airway pressure of 25 cmH2O) was calculated by neon dilution. The DLCO was estimated by a modification of the single-breath method. There was a high correlation between body weight and our measurement of both the diffusing capacity and the lung volumes. No significant difference in DLCO was observed in rats when measured in different body positions, at airway pressures of 10 or 20 cmH2O, from FRC or RV, in male or female rats, or following hyperventilation.

1980 ◽  
Vol 49 (4) ◽  
pp. 566-570 ◽  
Author(s):  
S. S. Cassidy ◽  
M. Ramanathan ◽  
G. L. Rose ◽  
R. L. Johnson

The diffusing capacity of the lung for carbon monoxide (DLCO) varies directly with lung volume (VA) when measured during a breath-holding interval. DLCO measured during a slow exhalation from total lung capacity (TLC) to functional residual capacity (FRC) does not vary as VA changes. Since VA is reached by inhaling during breath holding and by exhaling during the slow exhalation maneuver, we hypothesized that the variability in the relation between DLCO and VA was due to hysteresis. To test this hypothesis, breath-holding measurements of DLCO were made at three lung volumes, both when VA was reached by inhaling from residual volume (RV) and when Va was reached by exhaling from TLC. At 72% TLC, DLCO was 22% higher when VA was reached by exhalation compared to inhalation (P < 0.02). At 52% TLC, DLCO was 19% higher when VA was reached by exhalation compared to exhalation (P < 0.005). DCLO measured during a slow exhalation fell on the exhalation limb of the CLCO/VA curve. these data indicate that there is hysteresis in DLCO with respect to lung volume.


PEDIATRICS ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 181-193
Author(s):  
C. D. Cook ◽  
P. J. Helliesen ◽  
L. Kulczycki ◽  
H. Barrie ◽  
L. Friedlander ◽  
...  

Tidal volume, respiratory rate and lung volumes have been measured in 64 patients with cystic fibrosis of the pancreas while lung compliance and resistance were measured in 42 of these. Serial studies of lung volumes were done in 43. Tidal volume was reduced and the respiratory rate increased only in the most severely ill patients. Excluding the three patients with lobectomies, residual volume and functional residual capacity were found to be significantly increased in 46 and 21%, respectively. These changes correlated well with the roentgenographic evaluation of emphysema. Vital capacity was significantly reduced in 34% while total lung capacity was, on the average, relatively unchanged. Seventy per cent of the 61 patients had a signficantly elevated RV/TLC ratio. Lung compliance was significantly reduced in only the most severely ill patients but resistance was significantly increased in 35% of the patients studied. The serial studies of lung volumes showed no consistent trends among the groups of patients in the period between studies. However, 10% of the surviving patients showed evidence of significant improvement while 15% deteriorated. [See Fig. 8. in Source Pdf.] Although there were individual discrepancies, there was a definite correlation between the clinical evaluation and tests of respiratory function, especially the changes in residual volume, the vital capacity, RV/ TLC ratio and the lung compliance and resistance.


1961 ◽  
Vol 16 (2) ◽  
pp. 331-338 ◽  
Author(s):  
C. Emirgil ◽  
H. O. Heinemann

Fifteen patients, free from cardiac and pulmonary disease, but receiving radiotherapy for carcinoma of the breast or carcinoma of the lung, were studied to determine the effect of irradiation on pulmonary function. Lung volumes, the distribution of inspired air, the levels of gases in the arterial blood, the diffusing capacity of the lung, and the mechanics of breathing were measured before and at varying intervals after the completion of radiotherapy. The results showed: early and progressive reduction of inspiratory capacity (IC) and residual volume (RV), decreasing the total lung capacity (TLC) without changing the RV/TLC ratio; unchanged distribution of inspired air; mild hypoxemia at rest; reduced diffusing capacity of the lung for carbon monoxide; and an early and progressive decrease in pulmonary compliance. These observations indicate that irradiation of the chest is complicated by a decrease in lung volumes, an impairment of the diffusing capacity, and an increase in the work of breathing. Submitted on September 6, 1960


PEDIATRICS ◽  
1980 ◽  
Vol 65 (5) ◽  
pp. 1013-1017
Author(s):  
Thomas G. Keens ◽  
Margaret H. O'Neal ◽  
Jorge A. Ortega ◽  
Carol B. Hyman ◽  
Arnold C.G. Platzker

Pulmonary function tests were performed in 12 thalassemia patients on a hypertransfusion program (age 18.4 ± 2.6 SEM years) to determine the presence of any abnormalities of lung function. These included spirometry, expiratory flow rates, body plethysmography, single-breath nitrogen washout, single breath carbon monoxide diffusing capacity, and arterial blood gases. Only one patient had normal pulmonary function. Arterial hypoxemia was present in ten of 12 patients at rest. The total lung capacity (TLC) was normal. The residual volume was abnormally increased in five of 12 patients. The slope of phase III of single breath nitrogen washout curve was abnormal in five of 12 patients, but the closing volume was normal. The maximal expiratory flow rate at 60% total lung capacity was decreased in four of 12 patients, suggesting the presence of small airway disease. The single breath carbon monoxide diffusing capacity was normal in all patients. These pulmonary function abnormalities did not correlate with age or the cumulative amount of iron via blood transfused. The small airway obstruction, hyperinflation; and hypoxemia observed in thalassemia patients on a hypertransfusion program may result from the basic disease, iron deposition in the lungs, or other factors.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yoshitake Yamada ◽  
Minoru Yamada ◽  
Shotaro Chubachi ◽  
Yoichi Yokoyama ◽  
Shiho Matsuoka ◽  
...  

Abstract Currently, no clinical studies have compared the inspiratory and expiratory volumes of unilateral lung or of each lobe among supine, standing, and sitting positions. In this prospective study, 100 asymptomatic volunteers underwent both low-radiation-dose conventional (supine position, with arms raised) and upright computed tomography (CT) (standing and sitting positions, with arms down) during inspiration and expiration breath-holds and pulmonary function test (PFT) on the same day. We compared the inspiratory/expiratory lung/lobe volumes on CT in the three positions. The inspiratory and expiratory bilateral upper and lower lobe and lung volumes were significantly higher in the standing/sitting positions than in the supine position (5.3–14.7% increases, all P < 0.001). However, the inspiratory right middle lobe volume remained similar in the three positions (all P > 0.15); the expiratory right middle lobe volume was significantly lower in the standing/sitting positions (16.3/14.1% decrease) than in the supine position (both P < 0.0001). The Pearson’s correlation coefficients (r) used to compare the total lung volumes on inspiratory CT in the supine/standing/sitting positions and the total lung capacity on PFT were 0.83/0.93/0.95, respectively. The r values comparing the total lung volumes on expiratory CT in the supine/standing/sitting positions and the functional residual capacity on PFT were 0.83/0.85/0.82, respectively. The r values comparing the total lung volume changes from expiration to inspiration on CT in the supine/standing/sitting positions and the inspiratory capacity on PFT were 0.53/0.62/0.65, respectively. The study results could impact preoperative CT volumetry of the lung in lung cancer patients (before lobectomy) for the prediction of postoperative residual pulmonary function, and could be used as the basis for elucidating undetermined pathological mechanisms. Furthermore, in addition to morphological evaluation of the chest, inspiratory and expiratory upright CT may be used as an alternative tool to predict lung volumes such as total lung capacity, functional residual capacity, and inspiratory capacity in situation in which PFT cannot be performed such as during an infectious disease pandemic, with relatively more accurate predictability compared with conventional supine CT.


1980 ◽  
Vol 48 (1) ◽  
pp. 97-103 ◽  
Author(s):  
P. R. Sorenson ◽  
N. E. Robinson

Quasi-static pressure-volume curves and single-breath nitrogen washouts were performed simultaneously on eight anesthetized horses (average body wt = 485 kg) in left lateral, right lateral, prone, and supine postures (sequence randomized). The shift from prone to lateral or supine posture decreased expiratory reserve volume (ERV), vital capacity (VC), residual volume (RV), functional residual capacity (FRC), and total lung capacity (TLC); RV and FRC expressed as %TLC were unchanged, suggesting that in the lateral and supine postures a significant portion of the lung volume was not recruited by VC maneuvers. Phase III slope increased from 0.13 %N2/l in prone horses to 0.34 %N2/l in the lateral and supine positions. The onset of phase IV was not significantly different from FRC in the prone or laterally recombent animal, but exceeded FRC in the supine horse. The sequence of body positions had no effect on any of our results indicating that all changes in lung volumes and regional asynchronous ventilation c;n be reversed by placing the horse in the prone posture. The reduction in lung volume and increased asynchronous ventilation in the lateral and supine horse suggests that impaired gas exchange in anesthetized horses is predominantly related to posture, and not general anesthesia.


2000 ◽  
Vol 89 (4) ◽  
pp. 1591-1600 ◽  
Author(s):  
George P. Topulos ◽  
Richard E. Brown ◽  
James P. Butler

The pressure-volume (P-V) characteristics of the lung microcirculation are important determinants of the pattern of pulmonary perfusion and of red and white cell transit times. Using diffuse light scattering, we measured capillary P-V loops in seven excised perfused dog lobes at four lung volumes, from functional residual capacity (FRC) to total lung capacity (TLC), over a wide range of vascular transmural pressures (Ptm). At Ptm 5 cmH2O, specific compliance of the microvasculature was 8.6%/cmH2O near FRC, decreasing to 2.7%/cmH2O as lung volume increased to TLC. At low lung volumes, the vasculature showed signs of strain stiffening (specific compliance fell as Ptm rose), but stiffening decreased as lung volume increased and was essentially absent at TLC. The P-V loops were smooth without sharp transitions, consistent with vascular distension as the primary mode of changes in vascular volume with changes in Ptm. Hysteresis was small (0.013) at all lung volumes, suggesting that, although surface tension may set basal capillary shape, it does not strongly affect capillary compliance.


1987 ◽  
Vol 62 (1) ◽  
pp. 39-46 ◽  
Author(s):  
T. L. Clanton ◽  
G. F. Dixon ◽  
J. Drake ◽  
J. E. Gadek

Lung volumes and inspiratory muscle (IM) function tests were measured in 16 competitive female swimmers (age 19 +/- 1 yr) before and after 12 wk of swim training. Eight underwent additional IM training; the remaining eight were controls. Vital capacity (VC) increased 0.25 +/- 0.25 liters (P less than 0.01), functional residual capacity (FRC) increased 0.39 +/- 0.29 liters (P less than 0.001), and total lung capacity (TLC) increased 0.35 +/- 0.47 (P less than 0.025) in swimmers, irrespective of IM training. Residual volume (RV) did not change. Maximum inspiratory mouth pressure (PImax) measured at FRC changed -43 +/- 18 cmH2O (P less than 0.005) in swimmers undergoing IM conditioning and -29 +/- 25 (P less than 0.05) in controls. The time that 65% of prestudy PImax could be endured increased in IM trainers (P less than 0.001) and controls (P less than 0.05). All results were compared with similar IM training in normal females (age 21.1 +/- 0.8 yr) in which significant increases in PImax and endurance were observed in IM trainers only with no changes in VC, FRC, or TLC (Clanton et al., Chest 87: 62–66, 1985). We conclude that 1) swim training in mature females increases VC, TLC, and FRC with no effect on RV, and 2) swim training increases IM strength and endurance measured near FRC.


1977 ◽  
Vol 42 (6) ◽  
pp. 899-902 ◽  
Author(s):  
M. A. Hutcheon ◽  
J. R. Rodarte ◽  
R. E. Hyatt

Static lung volumes and static elastic recoil pressure (Pel) were measured in normal subjects breathing air and 80% helium plus 20% oxygen (He+O2). In 22 subjects, He+O2 produced small but significant increases in total lung capacity (TLC) (mean 0.11 liter, P less than 0.001) and residual volume (mean 0.10 liter, P less than 0.01) without change in vital capacity or functional residual capacity. The mechanisms for this change are obscure. In 10 subjects, breathing He+O2 had no significant effect on Pel (paired t-test) at any lung volume measured (50–80% TLC). In one subject, Pel at 70 and 80% TLC was significantly higher on air than on He+O2 (unpaired t-test, P less than 0.05). Because changes in lung volumes and lung recoil were small, we concluded that these effects do not negate the clinical utility of He+O2 flow-volume curves.


1995 ◽  
Vol 78 (3) ◽  
pp. 1030-1036 ◽  
Author(s):  
J. L. Wait ◽  
D. Staworn ◽  
D. C. Poole

One of the determinants of muscular force is the number of myofibrils in parallel, which is approximated by thickness. To better understand the heterogeneity of diaphragm thickness, we quantified the interregional and radial patterns of thickness of nine canine diaphragms rapidly perfusion fixed in situ with glutaraldehyde at functional residual capacity (FRC) (n = 6) and total lung capacity (TLC) (n = 3). Thickness was determined gravimetrically from punch biopsies radiating from the central tendon to rib cage insertion in ventral, middle, and dorsal costal and crural regions. For comparison, the contralateral unfixed hemidiaphragm was sampled in the same fashion. The findings of this investigation include the following. 1) The costal diaphragm exhibits the same pattern of interregional heterogeneity at FRC, TLC, and in the freshly excised state. 2) The costal diaphragm is significantly thinner at FRC in situ (0.17 +/- 0.01 cm) than is the freshly excised contralateral diaphragm (0.21 +/- 0.01 cm; P < 0.05), whereas there is no significant difference between thickness at TLC and the freshly excised state. 3) There is significant, previously underscribed, radial tapering from the rib cage attachment (0.24 +/- 0.02) to the central tendon insertion (0.15 +/- 0.01 cm; P < 0.05) that is exaggerated at TLC. 4) With passive inflation from FRC to TLC, the greatest increase in thickness occurs close to the rib cage attachment for the ventral and medial costal regions but close to the central tendon in the dorsal and crural regions. We conclude that the diaphragm at FRC and TLC exhibits radial thickness heterogeneity that cannot be predicted from dimensions of the freshly excised diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document