Respiratory arrhythmias and airway CO2, lung receptors, and central inspiratory activity

1986 ◽  
Vol 60 (5) ◽  
pp. 1713-1721 ◽  
Author(s):  
R. L. Coon ◽  
E. J. Zuperku ◽  
J. P. Kampine

The purpose of this study was to determine whether hypocapnia affects heart rate secondary to an effect on pulmonary receptors. Dogs were anesthetized and placed on cardiopulmonary bypass. Interrelationships among airway CO2, central inspiratory activity, and lung receptor effects on respiratory-related heart rate changes (respiratory arrhythmias) were studied after vagal efferent activity was increased secondary to baroreceptor stimulation. Hypocapnia, isolated to the lungs, produced an increase in the magnitude of the respiratory arrhythmias observed. Two mechanisms may produce these results. Hypocapnia affects pulmonary receptors, which 1) reflexly alter heart rate and 2) modulate breathing frequency, thus altering the dynamics of the respiratory arrhythmias that were produced. The results also suggested that the reflex increase in heart rate in response to lung inflation and the Hering-Breuer expiratory-facilitatory reflex are either produced by different pulmonary receptors or by the same pulmonary receptors but may be mediated by different central mechanisms.

1987 ◽  
Vol 62 (3) ◽  
pp. 870-879 ◽  
Author(s):  
W. B. Wead ◽  
S. S. Cassidy ◽  
J. R. Coast ◽  
H. K. Hagler ◽  
R. C. Reynolds

The purpose of these studies was to determine the reflex responses of the cardiovascular system and central inspiratory activity caused by pulmonary vascular congestion. We used a canine preparation in which the left lung was isolated in situ and could be exposed to a variety of stimuli, including distension of the pulmonary capillaries with blood, without direct mechanical or chemical alterations on the circulation. We found that lung expansion to 30 cmH2O and stimulation of nerve endings of the left lung with capsaicin caused pronounced transient reflex bradycardia (-30 to -50 beats/min) and hypotension (-25 to -40 mmHg) and caused reflex cessation of inspiratory activity. Pressurizing the left pulmonary vessels by injecting blood in volumes sufficient to raise pulmonary transcapillary pressures to 30 mmHg caused no changes in heart rate, systemic arterial pressure, or inspiratory muscle activity. These results lead us to conclude that pulmonary vascular congestion does not stimulate pulmonary C-fibers or any other nerve endings to such a degree as to cause detectable changes in blood pressure, heart rate, or central inspiratory activity. Morphometric analysis revealed distended capillaries engorged with blood, but the alveolar wall surface area was not increased which raises the possibility that expansion of the alveolar membrane may be needed to mechanically initiate the C-fiber reflex.


1985 ◽  
Vol 69 (5) ◽  
pp. 533-540 ◽  
Author(s):  
Gianfranco Parati ◽  
Guido Pomidossi ◽  
Agustin Ramirez ◽  
Bruno Cesana ◽  
Giuseppe Mancia

1. In man evaluation of neural cardiovascular regulation makes use of a variety of tests which address the excitatory and reflex inhibitory neural influences that control circulation. Because interpretation of these tests is largely based on the magnitude of the elicited haemodynamic responses, their reproducibility in any given subject is critical. 2. In 39 subjects with continuous blood pressure (intra-arterial catheter) and heart rate monitoring we measured (i) the blood pressure and heart rate rises during hand-grip and cold-pressor test, (ii) the heart rate changes occurring during baroreceptor stimulation and deactivation by injection of phenylephrine and trinitroglycerine, and (iii) the heart rate and blood pressure changes occurring with alteration in carotid baroreceptor activity by a neck chamber. Each test was carefully standardized and performed at 30 min intervals for a total of six times in each subject. 3. The results showed that the responses to any test were clearly different from one another and that this occurred in all subjects studied. For the group as a whole the average response variability (coefficient of variation) ranged from 10.2% for the blood pressure response to carotid baroreceptor stimulation to 44.2% for the heart rate response to cold-pressor test. The variability of the responses was not related to basal blood pressure or heart rate, nor to the temporal sequence of the test performance. 4. Thus tests employed for studying neural cardiovascular control in man produce responses whose reproducibility is limited. This phenomenon may make it more difficult to define the response magnitude typical of each subject, as well as its comparison in different conditions and diseases.


Author(s):  
Shehan Jayasekera ◽  
Edward Hensel ◽  
Risa Robinson

Background: Natural environment inhalation topography provides useful information for toxicant exposure, risk assessment and cardiopulmonary performance. Commercially available wearable respiratory monitors (WRMs), which are currently used to measure a variety of physiological parameters such as heart rate and breathing frequency, can be leveraged to obtain inhalation topography, yet little work has been done. This paper assesses the feasibility of adapting these WRMs for measuring inhalation topography. Methods: Commercially available WRMs were compiled and assessed for the ability to report chest motion, data analysis software features, ambulatory observation capabilities, participant acceptability, purchasing constraints and affordability. Results: The following WRMs were found: LifeShirt, Equivital EQ02 LifeMonitor, Smartex WWS, Hexoskin Smart Garment, Zephyr BioHarness, Nox T3&A1, BioRadio, SleepSense Inductance Band, and ezRIP & zRIP Durabelt. None of the WRMs satisfied all six assessment criteria in a manner enabling them to be used for inhalation topography without modification and development. Conclusions: The results indicate that there are WRMs with core technologies and characteristics that can be built upon for ambulatory inhalation topography measurement in the NE.


1995 ◽  
Vol 269 (2) ◽  
pp. H480-H486 ◽  
Author(s):  
Y. Yamamoto ◽  
J. O. Fortrat ◽  
R. L. Hughson

The purpose of the present study was to investigate the basic fractal nature of the variability in resting heart rate (HRV), relative to that in breathing frequency (BFV) and tidal volume (TVV), and to test the hypothesis that fractal HRV is due to the fractal BFV and/or TVV in humans. In addition, the possible fractal nature of respiratory volume curves (RVC) and HRV was observed. In the first study, eight subjects were tested while they sat quietly in a comfortable chair for 60 min. Beat-to-beat R-R intervals, i.e., HRV, and breath-by-breath BFV and TVV were measured. In the second study, six subjects were tested while they were in the supine position for 20-30 min. The RVC was monitored continuously together with HRV. Coarse-graining spectral analysis (Yamamoto, Y., and R. L. Hughson, Physica D 68: 250-264, 1993) was applied to these signals to evaluate the percentage of random fractal components in the time series (%Fractal) and the spectral exponent (beta), which characterizes irregularity of the signals. The estimates of beta were determined for each variable only over the range normally used to evaluate HRV. Values for %Fractal and beta of both BFV and TVV were significantly (P < 0.05) greater than those for HRV. In addition, there was no significant (P > 0.05) correlation between the beta values of HRV relative to either BFV (r = 0.14) or TVV (r = 0.34). RVC showed a smooth oscillation as compared with HRV; %Fractal for RVC (42.3 +/- 21.7%, mean +/- SD) was significantly (P < 0.05) lower than that for HRV (78.5 +/- 4.2%).(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 200 (19) ◽  
pp. 2539-2545
Author(s):  
J Herman ◽  
T Wang ◽  
A W Smits ◽  
J W Hicks

As for most ectothermic vertebrates, the breathing pattern of turtles is episodic, and pulmonary blood flow (Qpul) and heart rate (fH) normally increase several-fold during spontaneous ventilation. While some previous studies suggest that these cardiovascular changes are caused by stimulation of pulmonary stretch receptors (PSRs) during ventilation, it has been noted in other studies that blood flows often change prior to the initiation of breathing. Given the uncertainty regarding the role of PSRs in the regulation of central vascular blood flows, we examined the effect of manipulating lung volume (and therefore PSR stimulation) on blood flows and heart rate in the freshwater turtle Trachemys scripta. Turtles were instrumented with blood flow probes on the left aortic arch and the left pulmonary artery for measurements of blood flow, and catheters were inserted into both lungs for manipulation of lung volume. In both anaesthetized and fully recovered animals, reductions or increases in lung volume by withdrawal of lung gas or injection of air, N2, O2 or 10% CO2 (in room air) had no effect on blood flows. Furthermore, simulations of normal breathing bouts by withdrawal and injection of lung gas did not alter Qpul or fH. We conclude that stimulation of PSRs is not sufficient to elicit cardiovascular changes and that the large increase in Qpul and fH normally observed during spontaneous ventilation are probably caused by a simultaneous feedforward control of central origin.


1988 ◽  
Vol 64 (4) ◽  
pp. 1709-1720 ◽  
Author(s):  
C. A. Richardson

To investigate the effect of lung inflations on the high-frequency synchrony (70-122 Hz) observed in the inspiratory activity of respiratory motor nerves of decerebrate cats, I applied a step increase in lung inflation pressure at fixed delays into the inspiratory phase and computed power spectra of phrenic neurograms before and during inflation. In 25 decerebrate paralyzed cats the frequency of the high spectral peak was 92.3 +/- 11.1 Hz before and 105.3 +/- 12.1 Hz during the step in inflation pressure, shifting upward by 13.0 +/- 6.0 Hz. For 8 of the 25 cats, the recurrent laryngeal and phrenic neurograms were recorded simultaneously. The high spectral peak was present during inspiration in the recurrent laryngeal power spectra and coherent with the high peak in the phrenic power spectra. In response to lung inflation, the high peak disappeared from the power spectra of the recurrent laryngeal nerve as the inspiratory activity was inhibited; a shift upward in frequency was not detectable. Comparing inspiratory times (TI, based on the phrenic neurograms) for breaths with no lung inflations to those for breaths with lung inflations, I found that lung inflations early in inspiration caused a decrease in TI, lung inflations at intermediates times had no effect on TI, and lung inflations late in inspiration caused an increase in TI. Despite lung inflation decreasing, not affecting, or increasing inspiratory duration and amplitude of the phrenic neurogram, lung inflation always caused a shift upward in the high-frequency peak of the phrenic power density. The fact that lung inflation, a powerful respiratory stimulus, affected the frequency of the high peak in a consistent manner suggests that the high-frequency synchrony is an important and robust feature of the central respiratory pattern generator.


1984 ◽  
Vol 57 (5) ◽  
pp. 1384-1392 ◽  
Author(s):  
A. Tripathi ◽  
X. Shi ◽  
C. B. Wenger ◽  
E. R. Nadel

To investigate the interaction of thermal reflexes and baroreflexes in the control of the peripheral veins, we studied in supine humans the effects of lower body negative pressure (LBNP) and neck suction (NS) on forearm veins at ambient temperatures (Ta) of 18, 28, and 37 degrees C. Forearm venous volume (FVV)-venous pressure (FVP) relations (forearm venous capacitance) on six subjects showed an increase from 18 through 28 to 37 degrees C (P less than 0.001). Heart rate increased (P less than 0.001) and forearm venous capacitance decreased (P less than 0.001) in proportion to the level of LBNP applied from 20 to 50 Torr at all Ta. At 50 Torr LBNP, FVV at 30 cmH2O, FVP decreased from control values of 2.5, 3.8, and 4.4 to 1.6, 2.7, and 3.4 ml/100 ml at 18, 28, and 37 degrees C, respectively. We also studied venomotor responses using the occluded limb technique. Although LBNP caused venoconstriction, NS applied either alone or during LBNP produced no change in venomotor tone. Therefore we concluded that carotid baroreceptors play little role in reflex venomotor adjustments. Since changes in mean arterial and pulse pressures during LBNP did not account for the observed venomotor responses, we concluded that low-pressure baroreceptors initiate significant venoconstrictor reflexes over a wide range of Ta.


1977 ◽  
Vol 43 (3) ◽  
pp. 449-454 ◽  
Author(s):  
T. Trippenbach ◽  
J. Milic-Emili

The present investigation was undertaken to study the interaction of CO2 and body temperature on phrenic activity (moving average) and tracheal occlusion pressure. Studies were performed on spontaneously ventilated cats anesthetized with pentobarbital sodium at different body temperatures (32–41 degrees C) while breathing room air, 2 and 4% CO2 in 50% O2. At any given chemical drive, increased body temperature caused a similar increase in rate of phrenic activity and tracheal occlusion pressure, while their peak values remained virtually unchanged. At any given body temperature, increased chemical drive caused an increase in both rate of rise and peak values of phrenic activity and tracheal occlusion pressure. These results confirm previous findings that body temperature affects the rate of rise of the central inspiratory activity (CIA), but not the inspiratory “off-switch” threshold, while CO2 increases both the rate of rise of CIA and off-switch threshold. In addition the results indicate that tracheal occlusion pressure provides a similar index of CIA as “integrated” phrenic activity.


1982 ◽  
Vol 53 (5) ◽  
pp. 1063-1070 ◽  
Author(s):  
M. M. Grunstein ◽  
J. S. Grunstein

The respiratory responses to systemic infusion of the opioid peptide, [D-Ala2, D-Leu5]enkephalin (ENK) were determined in 39 unanesthetized tracheotomized rabbits (age range 1–20 days). At all ages, ventilation (VE), measured in a body plethysmograph, was depressed after ENK infusion in association with a decrease in CO2 elimination (VCO2) and body temperature. The degree of VE depression varied inversely with increasing age and was directly related to changes in mean inspiratory flow (i.e., VT/TI) while the ratio of inspiratory to total breath duration (TI/TT) was unaltered, except in rabbits under about 1 wk of age. Maturational differences in the VE response to ENK were related to age-dependent variation in the stability of the central inspiratory activity, which was manifested as periodic breathing with apnea in rabbits under about 5 days of age. Since the initial inspiratory volume-time profile was little affected by ENK and vagal afferent influence on respiration was not diminished, the depression in VE could be explained by an inhibition of the central inspiratory “off-switch” threshold and delay in central inspiratory “on-switching.” All effects of ENK were reversed by the opiate antagonist, naloxone.


Sign in / Sign up

Export Citation Format

Share Document