spectral exponent
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jacopo Lanzone ◽  
Michele Colombo ◽  
Simone Sarasso ◽  
Filippo Zappasodi ◽  
Mario Rosanova ◽  
...  

Background: Quantitative EEG (qEEG) can capture changes in brain activity that follow a stroke. Accordingly, EEG metrics could be used to monitor patients state and recovery. Although qEEG metrics traditionally focus on oscillatory activity, recent findings highlight the importance of aperiodic (power-law) structure in characterizing pathological brain states. Objective: To assess neurophysiological impairment and recovery from mono-hemispheric stroke by means of the Spectral Exponent (SE), a metric that reflects EEG slowing and quantifies the power-law decay of the EEG Power Spectral Density (PSD). To relate neurophysiological recovery with patients functional outcome. Methods: Eighteen patients (n=18) with Middle Cerebral Artery (MCA) ischaemic stroke were retrospectively enrolled for this study. Patients underwent EEG recording in the sub-acute phase (T0) and after 2 months of physical rehabilitation (T1). Sixteen healthy controls (HC; n=16) matched by age and sex were enrolled as a normative group. SE values and narrow-band PSD were estimated for each recording. We compared SE and band-power between patients and HC, and between the affected (AH) and unaffected hemisphere (UH) at T0 and T1 in patients. Results: At T0, stroke patients showed significantly more negative SE values than HC (p=0.003), reflecting broad-band EEG slowing. Moreover, SE over the AH was consistently more negative compared to the UH and showed a renormalization at T1 in our patient sample. This SE renormalization significantly correlated with NIHSS improvement (R= 0.63, p=0.005). Conclusions: SE is a reliable readout of the electric changes occurring in the brain after an ischaemic cortical lesion. Moreover, SE holds the promise to be a robust method to assess stroke impairment as well as to monitor and predict functional outcome.



2021 ◽  
Author(s):  
Leonhard Waschke ◽  
Thomas Donoghue ◽  
Lorenz Fiedler ◽  
Sydney Smith ◽  
Douglas D. Garrett ◽  
...  

AbstractA hallmark of electrophysiological brain activity is its 1/f-like spectrum – power decreases with increasing frequency. The steepness of this “roll-off” is approximated by the spectral exponent, which in invasively recorded neural populations reflects the balance of excitatory to inhibitory neural activity (E:I balance). Here, we first demonstrate that the spectral exponent of non-invasive electroencephalography (EEG) recordings is highly sensitive to general, anaesthesia-driven as well as specific, attention-driven changes in E:I balance. We then present results from an EEG experiment during which participants detected faint target stimuli in streams of simultaneously presented auditory and visual noise. EEG spectral exponents over auditory and visual sensory cortices tracked stimulus spectral exponents of the corresponding domain, while evoked responses remained unchanged. Crucially, the degree of this stimulus–brain spectral-exponent coupling was positively linked to behavioural performance. Our results highlight the relevance of neural 1/f-like activity and enable the study of neural processes previously thought to be inaccessible in non-invasive human recordings.



2021 ◽  
Vol 7 (5) ◽  
pp. eabc6234
Author(s):  
Alexandre Vilquin ◽  
Julie Jagielka ◽  
Simeon Djambov ◽  
Hugo Herouard ◽  
Patrick Fisher ◽  
...  

The friction f is the property of wall-bounded flows that sets the pumping cost of a pipeline, the draining capacity of a river, and other variables of practical relevance. For highly turbulent rough-walled pipe flows, f depends solely on the roughness length scale r, and the f − r relation may be expressed by the Strickler empirical scaling f ∝ r1/3. Here, we show experimentally that for soap film flows that are the two-dimensional (2D) equivalent of highly turbulent rough-walled pipe flows, f ∝ r and the f − r relation is not the same in 2D as in 3D. Our findings are beyond the purview of the standard theory of friction but consistent with a competing theory in which f is linked to the turbulent spectrum via the spectral exponent α: In 3D, α = 5/3 and the theory yields f ∝ r1/3; in 2D, α = 3 and the theory yields f ∝ r.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anirban Dutta ◽  
Sneha Sudhakar Karanth ◽  
Mahasweta Bhattacharya ◽  
Michal Liput ◽  
Justyna Augustyniak ◽  
...  

AbstractHomeostatic control of neuronal excitability by modulation of synaptic inhibition (I) and excitation (E) of the principal neurons is important during brain maturation. The fundamental features of in-utero brain development, including local synaptic E–I ratio and bioenergetics, can be modeled by cerebral organoids (CO) that have exhibited highly regular nested oscillatory network events. Therefore, we evaluated a 'Phase Zero' clinical study platform combining broadband Vis/near-infrared(NIR) spectroscopy and electrophysiology with studying E–I ratio based on the spectral exponent of local field potentials and bioenergetics based on the activity of mitochondrial Cytochrome-C Oxidase (CCO). We found a significant effect of the age of the healthy controls iPSC CO from 23 days to 3 months on the CCO activity (chi-square (2, N = 10) = 20, p = 4.5400e−05), and spectral exponent between 30–50 Hz (chi-square (2, N = 16) = 13.88, p = 0.001). Also, a significant effect of drugs, choline (CHO), idebenone (IDB), R-alpha-lipoic acid plus acetyl-l-carnitine (LCLA), was found on the CCO activity (chi-square (3, N = 10) = 25.44, p = 1.2492e−05), spectral exponent between 1 and 20 Hz (chi-square (3, N = 16) = 43.5, p = 1.9273e−09) and 30–50 Hz (chi-square (3, N = 16) = 23.47, p = 3.2148e−05) in 34 days old CO from schizophrenia (SCZ) patients iPSC. We present the feasibility of a multimodal approach, combining electrophysiology and broadband Vis–NIR spectroscopy, to monitor neurodevelopment in brain organoid models that can complement traditional drug design approaches to test clinically meaningful hypotheses.



2020 ◽  
Author(s):  
Anirban Dutta ◽  
Sneha Sudhakar Karanth ◽  
Mahasweta Bhattacharya ◽  
Michal Liput ◽  
Justyna Augustyniak ◽  
...  

AbstractHomeostatic control of neuronal excitability by modulation of synaptic inhibition (I) and excitation (E) of the principal neurons is important during brain maturation. The fundamental features of in-utero brain developmental, including local synaptic E-I ratio and bioenergetics, can be modeled by cerebral organoids (CO) that have exhibited highly regular nested oscillatory network events. Therefore, we evaluated a ‘Phase Zero’ clinical study platform combining broadband Vis/near-infrared(NIR) spectroscopy and electrophysiology to study E-I ratio based on the spectral exponent of local field potentials and bioenergetics based on the activity of mitochondrial Cytochrome-C Oxidase (CCO). We found a significant effect of the age of the healthy controls iPSC CO from 23 days to 3 months on the CCO activity (χ2(2,N=10)=20,p=4.5400e-05), and spectral exponent between 30–50Hz (χ2(2,N=16)=13.88,p=0.001). Also, a significant effect of drugs, choline (CHO), idebenone (IDB), R-alpha-lipoic acid plus acetyl-L-carnitine (LCLA), was found on the CCO activity (χ2(3,N=10)=25.44,p = 1.2492e-05), spectral exponent between 1–20Hz (χ2(3,N=16)=43.5,p=1.9273e-09) and 30–50Hz (χ2(3,N=16)=23.47, p=3.2148e-05) in 34 days old CO from schizophrenia (SCZ) patients iPSC. We present a multidimensional approach combining electrophysiology and Vis-NIR spectroscopy to complement traditional drug design approaches that can advance the system towards a normative parameter space.



Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 186 ◽  
Author(s):  
Mouldi Ben Meftah ◽  
Francesca De Serio ◽  
Diana De Padova ◽  
Michele Mossa

Experimental turbulence measurements of scour hole downstream of bed sills in alluvial channels with non-cohesive sediments are investigated. Using an Acoustic Doppler Velocimeter (ADV), the flow velocity-field within the equilibrium scour hole was comprehensively measured. In this study, we especially focus on the flow hydrodynamic structure in the scour hole at equilibrium. In addition to the flow velocity distribution in the equilibrium scour hole, the turbulence intensities, the Reynolds shear stresses, the turbulent kinetic energy, and the turbulent length scales are analyzed. Since the prediction of equilibrium scour features is always very uncertain, in this study and based on laboratory turbulence measurements, we apply the phenomenological theory of turbulence to predict the maximum equilibrium scour depth. With this approach, we obtain a new scaling of the maximum scour depth at equilibrium, which is validated using experimental data, satisfying the validity of a spectral exponent equal to −5/3. The proposed scaling shows a quite reasonable accuracy in predicting the equilibrium scour depth in different hydraulic structures.



NeuroImage ◽  
2019 ◽  
Vol 189 ◽  
pp. 631-644 ◽  
Author(s):  
Michele Angelo Colombo ◽  
Martino Napolitani ◽  
Melanie Boly ◽  
Olivia Gosseries ◽  
Silvia Casarotto ◽  
...  
Keyword(s):  




2018 ◽  
Vol 40 ◽  
pp. 04001
Author(s):  
Subhasish Dey ◽  
Sk Zeeshan Ali

In this paper, we seek the scaling laws of sediment transport under a turbulent flow by applying the phenomenological theory of turbulence. The results show that at the threshold of sediment motion, the densimetric Froude number follows a “(1+σ)/4” scaling law with the relative roughness number (ratio of particle size to flow depth), where σ is the spectral exponent. For the bedload transport, the bedload transport intensity follows a “3/2” and “(1+σ)/4” scaling laws with the transport stage function and the relative roughness, respectively. For the scour in a contracted stream, the dimensionless scour depth follows a “4/(3–σ)”, “– 4/(3–σ)” and “–(1+σ)/(3–σ)” scaling laws with the densimetric Froude number, the channel contraction ratio and the relative roughness, respectively.



2017 ◽  
Vol 21 (11) ◽  
pp. 5547-5581
Author(s):  
Annette Witt ◽  
Bruce D. Malamud ◽  
Clara Mangili ◽  
Achim Brauer

Abstract. In this paper, we present a unique 9.5 m palaeo-lacustrine record of 771 palaeofloods which occurred over a period of 9.3 kyr in the Piànico–Sèllere Basin (southern Alps) during an interglacial period in the Pleistocene (sometime from 780 to 393 ka) and analyse its correlation, clustering, and cyclicity properties. We first examine correlations, by applying power-spectral analysis and detrended fluctuation analysis (DFA) to a time series of the number of floods per decade, and find weak long-range persistence: a power-spectral exponent βPS  ≈  0.39 and an equivalent power-spectral exponent from DFA, βDFA ≈  0.25. We then examine clustering using the one-point probability distribution of the inter-flood intervals and find that the palaeofloods cluster in time as they are Weibull distributed with a shape parameter kW =  0.78. We then examine cyclicity in the time series of number of palaeofloods per year, and find a period of about 2030 years. Using these characterizations of the correlation, clustering, and cyclicity in the original palaeoflood time series, we create a model consisting of the superposition of a fractional Gaussian noise (FGN) with a 2030-year periodic component and then peaks over threshold (POT) applied. We use this POTFGN + Period model to create 2 600 000 synthetic realizations of the same length as our original palaeoflood time series, but with varying intensity of periodicity and persistence, and find optimized model parameters that are congruent with our original palaeoflood series. We create long realizations of our optimized palaeoflood model, and find a high temporal variability of the flood frequency, which can take values of between 0 and > 30 floods century−1. Finally, we show the practical utility of our optimized model realizations to calculate the uncertainty of the forecasted number of floods per century with the number of floods in the preceding century. A key finding of our paper is that neither fractional noise behaviour nor cyclicity is sufficient to model frequency fluctuations of our large and continuous palaeoflood record, but rather a model based on both fractional noise superimposed with a long-range periodicity is necessary.



Sign in / Sign up

Export Citation Format

Share Document