Voluntary breath holding in the obese

1987 ◽  
Vol 62 (6) ◽  
pp. 2371-2376 ◽  
Author(s):  
A. N. Hurewitz ◽  
M. G. Sampson

Alveolar gas tensions and arterial O2 saturation (Sao2) during a voluntary breath hold at functional residual capacity (FRC) were examined in 13 healthy seated subjects. An excellent correlation (r = 0.80) was found between the fall of alveolar O2 tensions (delta PETo2) and body weight, expressed as the ratio of weight to height (wt/ht, kg/cm). An even greater correlation (r = 0.89) was found between delta PETo2 and the ratio of breath-hold time X O2 consumption/FRC. Alveolar Po2 decreased to 70 mmHg in the obese group after just 15 s of apnea, whereas this degree of hypoxia did not occur in the nonobese until the breath hold was sustained for 30 s. This variable rate of fall of alveolar Po2 during a breath hold can be ascribed to the changes of O2 consumption (Vo2) and FRC associated with changing body weight. In the obese, Vo2/FRC was twice as large as in the nonobese, thus accounting for the differences of breath-hold time needed to obtain the same alveolar Po2. Sao2 measured at the end of the breath hold was the same as that value predicted from the reduction of PETo2. This suggests that the fall of alveolar Po2 can entirely account for the observed fall of O2 saturation and that venous admixture had not increased during the 15-s apnea. In patients with sleep apnea, the ratio of Vo2/(initial lung volume) may also be an important determinant of the severity of hypoxemia observed.

1987 ◽  
Vol 62 (5) ◽  
pp. 1962-1969 ◽  
Author(s):  
W. A. Whitelaw ◽  
B. McBride ◽  
G. T. Ford

The mechanism by which large lung volume lessens the discomfort of breath holding and prolongs breath-hold time was studied by analyzing the pressure waves made by diaphragm contractions during breath holds at various lung volumes. Subjects rebreathed a mixture of 8% CO2–92% O2 and commenced breath holding after reaching an alveolar plateau. At all volumes, regular rhythmic contractions of inspiratory muscles, followed by means of gastric and pleural pressures, increased in amplitude and frequency until the breakpoint. Expiratory muscle activity was more prominent in some subjects than others, and increased through each breath hold. Increasing lung volume caused a delay in onset and a decrease in frequency of contractions with no consistent change in duty cycle and a decline in magnitude of esophageal pressure swings that could be accounted for by force-length and geometric properties. The effect of lung volume on the timing of contractions most resembled that of a chest wall reflex and is consistent with the hypothesis that the contractions are a major source of dyspnea in breath holding.


2000 ◽  
Vol 89 (5) ◽  
pp. 1787-1792 ◽  
Author(s):  
Chantal Darquenne ◽  
Manuel Paiva ◽  
G. Kim Prisk

To determine the extent of the role that gravity plays in dispersion and deposition during breath holds, we performed aerosol bolus inhalations of 1-μm-diameter particles followed by breath holds of various lengths on four subjects on the ground (1G) and during short periods of microgravity (μG). Boluses of ∼70 ml were inhaled to penetration volumes (Vp) of 150 and 500 ml, at a constant flow rate of ∼0.45 l/s. Aerosol concentration and flow rate were continuously measured at the mouth. Aerosol deposition and dispersion were calculated from these data. Deposition was independent of breath-hold time at both Vp in μG, whereas, in 1G, deposition increased with increasing breath hold time. At Vp = 150 ml, dispersion was similar at both gravity levels and increased with breath hold time. At Vp = 500 ml, dispersion in 1G was always significantly higher than in μG. The data provide direct evidence that gravitational sedimentation is the main mechanism of deposition and dispersion during breath holds. The data also suggest that cardiogenic mixing and turbulent mixing contribute to deposition and dispersion at shallow Vp.


1975 ◽  
Vol 38 (5) ◽  
pp. 768-773 ◽  
Author(s):  
N. N. Stanley ◽  
M. D. Altose ◽  
S. G. Kelsen ◽  
C. F. Ward ◽  
N. S. Cherniack

Experiments were conducted on human subjects to study the effect of lung inflation during breath holding on respiratory drive. Two series of experiments were performed: the first to examine respiratory drive during a single breath hold, the second designed to examine the sustained effect of lung inflation on subsequent breath holds. The experiments involved breath holding begun either at the end of a normal expiration or after a maximum inspiration. When breath holding was repeated at 10-min intervals, the increase in BHT produced by lung inflation was greater in short breath holds (after CO2 rebreathing) than in long breath holds (after hyperventilation). If breath holds were made in rapid succession, the first breath hold was much longer when made at total lung capacity than at functional residual capacity, but this effect of lung inflation diminished in subsequent breath holds. It is concluded that the inhibitory effect of lung inflation decays during breath holding and is regained remarkably slowly during the period of breathing immediately after breath holding.


1994 ◽  
Vol 76 (4) ◽  
pp. 1494-1501 ◽  
Author(s):  
G. R. Soparkar ◽  
J. T. Mink ◽  
B. L. Graham ◽  
D. J. Cotton

The dynamic changes in CO concentration [CO] during a single breath could be influenced by topographic inhomogeneity in the lung or by peripheral inhomogeneity due to a gas mixing resistance in the gas phase of the lung or to serial gradients in gas diffusion. Ten healthy subjects performed single-breath maneuvers by slowly inhaling test gas from functional residual capacity to one-half inspiratory capacity and slowly exhaling to residual volume with target breath-hold times of 0, 1.5, 3, 6, and 9 s. We calculated the three-equation single-breath diffusing capacity of the lung for CO (DLSBCO-3EQ) from the mean [CO] in both the entire alveolar gas sample and in four successive equal alveolar gas samples. DLSBCO-3EQ from the entire alveolar gas sample was independent of breath-hold time. However, with 0 s of breath holding, from early alveolar gas samples DLSBCO-3EQ was reduced and from late alveolar gas samples it was increased. With increasing breath-hold time, DLSBCO-3EQ from the earliest alveolar gas sample rapidly increased, whereas from the last alveolar gas sample it rapidly decreased such that all values from the small alveolar gas samples approached DLSBCO-3EQ from the entire alveolar sample. These changes correlated with ventilation inhomogeneity, as measured by the phase III He concentration slope and the mixing efficiency, and were larger for maneuvers with inspired volumes to one-half inspiratory capacity vs. total lung capacity.(ABSTRACT TRUNCATED AT 250 WORDS)


1968 ◽  
Vol 4 (1) ◽  
pp. 73-77 ◽  
Author(s):  
J.R. Heath ◽  
C.J. Irwin
Keyword(s):  

1989 ◽  
Vol 76 (6) ◽  
pp. 673-676 ◽  
Author(s):  
A. H. Kendrick ◽  
A. Rozkovec ◽  
M. Papouchado ◽  
J. West ◽  
G. Laszlo

1. Resting pulmonary blood flow (Q.), using the uptake of the soluble inert gas Freon-22 and an indirect estimate of lung tissue volume, has been estimated during breath-holding (Q.c) and compared with direct Fick cardiac output (Q.f) in 16 patients with various cardiac disorders. 2. The effect of breath-hold time was investigated by comparing Q.c estimated using 6 and 10 s of breath-holding in 17 patients. Repeatability was assessed by duplicate measurements of Q.c in the patients and in six normal subjects. 3. Q.c tended to overestimate Q.f, the bias and error being 0.09 l/min and 0.59, respectively. The coefficient of repeatability for Q.c in the patients was 0.75 l/min and in the normal subjects was 0.66 1/min. For Q.f it was 0.72 l/min. There was no significant difference in Q.c measured at the two breath-hold times. 4. The technique is simple to perform, and provides a rapid estimate of Q., monitoring acute and chronic changes in cardiac output in normal subjects and patients with cardiac disease.


1983 ◽  
Vol 55 (6) ◽  
pp. 1777-1783 ◽  
Author(s):  
L. J. Findley ◽  
A. L. Ries ◽  
G. M. Tisi ◽  
P. D. Wagner

Seven normal awake males were studied to define the mechanisms and impact of lung volume on the hypoxemia occurring during apnea. During repeated 30-s voluntary breath holding, these subjects were studied at different lung volumes, during various respiratory maneuvers, and in the sitting and supine body positions. Analysis of expired gases and arterial O2 saturation during these repeated breath holdings yielded the following conclusions. Apnea of 30-s duration at low lung volumes is accompanied by severe arterial O2 desaturation in normal awake subjects. Initial lung volume is the most important determinant of hypoxemia during apnea. The hypoxemia of apnea at most lung volumes can be explained by simple alveolar hypoventilation in a uniform lung. The lung does not behave as a single-compartment model at lung volumes at which dependent airways are susceptible to closure.


1981 ◽  
Vol 50 (2) ◽  
pp. 435-443 ◽  
Author(s):  
W. A. Whitelaw ◽  
B. McBride ◽  
J. Amar ◽  
K. Corbet

The involuntary respiratory muscle contractions that occur during breath holding were found in almost all of 52 subjects and were regular in a majority. In detailed studies, subjects rebreathed a mixture of 8% CO2 in O2 and then held their breath on an occluded mouthpiece, with glottis open, at functional residual capacity. Contractions monitored as waves of negative pressure were reproducible and increased in amplitude and frequency through the breath hold, but the breakpoint did not always correspond to the same pressure or frequency. Frequency and the time derivative of pressure (dP/dt) of contractions were much higher during breath holding than frequency of breathing and dP/dt of occluded breaths at the same gas tensions during rebreathing. Contractions were reduced in amplitude after the subject took three breaths without altering gas tensions. The results are consistent with the hypothesis that contractions contribute to dyspnea in breath breath holding, but there is not a simple correlation between their magnitude and the degree of dyspnea.


1984 ◽  
Vol 56 (6) ◽  
pp. 1533-1540 ◽  
Author(s):  
J. P. Mortola

Newborn mammals have a high O2 consumption (per unit body weight), which implies a high ventilation. The choice between an increase in volume, frequency, or both is probably dictated by energetic factors, including the likelihood of chest distortion with large inspirations. Data on ventilatory pattern of unanesthetized newborns of eight mammalian species, ranging in size from mice to infants, have been collected. Minute ventilation was linked to the O2 consumption and increased progressively less with the body weight of the species (BW0.86) due to a drop in frequency with size (BW-0.15), whereas tidal volume varied in proportion with body weight (BW1.01). Mean inspiratory flow per unit body weight was more than twice as large in newborn mice and rats than in piglets or infants, whereas the inspiratory time-to-total breath duration ratio was approximately constant among species, averaging 37%. During expiration occasional interruptions of the flow were observed in most newborns; measurements of esophageal pressure and diaphragmatic electromyogram pointed toward upper airways closure and not active breath holding as the explanation of this phenomenon.


2006 ◽  
Vol 31 (5) ◽  
pp. 549-556 ◽  
Author(s):  
Ollie Jay ◽  
Matthew D. White

For non breath-hold-trained males and females matched for pulmonary capacity and body size, the effects of sex, water temperature, and end-tidal gas tensions were studied for their potential influences on breath-holding ability. Maximum breath-hold time (BHTmax) was measured a total of 546 times in 13 males and 13 females, each repeating 3 trials of sudden face immersion (i.e., no prior hyperventilation) in water at 0, 5, 10, 15, 20, and 33 °C and in an air control condition (AIR). End-tidal carbon dioxide (PETCO2) and oxygen (PETO2) gas tensions were measured before and after breath-holding in a subset of 11 males and 11 females. For BHTmax there was no main effect of sex (p = 0.20), but there was a main effect of immersion condition (p < 0.001). Relative to pre-immersion rest values, end-tidal gas tensions were significantly higher in males than in females (p ≤ 0.05) and significantly lower at decreased water temperatures relative to AIR (p ≤ 0.05). In conclusion, for these matched groups (i) sex did not influence BHTmax; (ii) irrespective of sex, decreases in water temperature at 0, 5, 10, and 15 °C gave proportionate decreases of BHTmax; (iii) significantly greater deviations in both PETCO2 and PETO2 following breath-holding were evident in males relative to females; and (iv) irrespective of sex, there were significantly smaller changes in both PETCO2 and PETO2 at lower water temperatures relative to AIR, with or without removing the variance due to breath holding.


Sign in / Sign up

Export Citation Format

Share Document