Effect of microgravity on the respiratory system

1991 ◽  
Vol 70 (5) ◽  
pp. 1907-1911 ◽  
Author(s):  
L. A. Engel

Because the pleural pressure gradient and regional distribution of pulmonary function are gravity dependent, substantial changes may be expected during weightlessness. Although very few measurements have been made during spaceflights, a number of observations during brief periods of weightlessness inside aircraft flying with parabolic trajectories confirm these predictions. Single-breath N2 washouts suggest a marked reduction in the inequality of ventilation distribution seen at 1 G. Similarly, inferences made from cardiogenic oscillations during single-breath washouts suggest a greater uniformity of perfusion during weightlessness. This is supported by changes seen on chest radiographs as well as by more direct measurements of regional blood flow distribution using radioactive iodine-labeled macroaggregates. Vital capacity is only slightly reduced, but functional residual capacity decreases by approximately 10% and maximum expiratory flow rates are slightly decreased, especially at low lung volumes. Weightlessness decreases abdominal girth, increases abdominal compliance, and substantially increases the abdominal contribution to tidal volume during resting breathing. Despite these changes, there does not appear to be any alteration in the temporal pattern of breathing. However, the deposition of inhaled medium-sized aerosol particles is substantially reduced, as predicted by model analyses of gravitational sedimentation. Virtually all these observations describe effects at the very onset of weightlessness. Practically nothing is known of slower functional changes and adaptations to prolonged weightlessness. Systematic repeated measurements during manned spaceflights will hopefully begin to provide some information on this subject in the near future.

1976 ◽  
Vol 230 (3) ◽  
pp. 691-698 ◽  
Author(s):  
K Nishiyama ◽  
A Nishiyama ◽  
ED Frohlich

Regional distribution of cardiac output in unanesthetized spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) and Wistar NR male rats (10 each group; average age 21 wk) was determined using two 15-mum microspheres (141Ce and 85Sr) injected 10 min apart through a left ventricular (LV) cannula. Fractional flow distribution was expressed as percentage activity of injected dose (average of the two measurements). Despite differences in body and organ weights, organ flow distribution did not vary between SHR and WKY, except for heart and testes (P less than 0.025). However, differences did not exist between SHR and NR with respect to heart, brain, lungs, spleen, and adrenal flows (P less than 0.05).


1979 ◽  
Vol 47 (1) ◽  
pp. 32-36 ◽  
Author(s):  
G. L. Rose ◽  
S. S. Cassidy ◽  
R. L. Johnson

Single-breath diffusing capacity of the lung for carbon monoxide (DLCO) increases as lung volume increases above functional residual capacity (FRC). However, the physiological mechanism responsible for this increase remains controversial. This volume dependence of diffusing capacity could reflect changing regional distribution of inspired air as lung volume increases rather than a change in capillary blood volume or surface area for gas exchange. We measured DLCO during breath holding and during rebreathing with a technique employed to mix respired gases throughout the lung thereby minimizing regional distribution differences. Measurements were made 1,500 ml above FRC and near total lung capacity (TLC). Breath holding DLCO was 18% higher near TLC than at 1,500 ml above FRC (P less than 0.05). Rebreathing DLCO was 16% higher near TCL than at 1,500 ml above FRC (P less than 0.01). Equality of results by the two techniques indicates that changes in DLCO with lung volume are not a consequence of the changing distribution of inspired air. Our results are compatible with the hypothesis that effective surface area of the lung increases as lung volume expands.


1980 ◽  
Vol 49 (6) ◽  
pp. 946-952 ◽  
Author(s):  
C. A. Bradley ◽  
N. R. Anthonisen

The effects of a variety of restrictive procedures on lung mechanics were studied in eight healthy subjects. Rib cage restriction decreased total lung capacity (TLC) by 43% and significantly increased elastic recoil and maximum expiratory flow (MEF). Subsequent immersion of four subjects with rib cage restriction resulted in no further change in either parameter; shifts of blood volume did not reverse recoil changes during rib cage restriction. Abdominal restriction decreased TLC by 40% and increased MEF and elastic recoil, but recoil was increased significantly less than was the case with rib cage restriction. Further, at a given recoil pressure, MEF was less during rib cage restriction than during either abdominal restriction or no restriction. Measurements of the unevenness of inspired gas distribution by the single-breath nitrogen technique showed increased unevenness during rib cage restriction, which was significantly greater than that during abdominal restriction. We conclude that lung volume restriction induces changes in lung function, but the nature of these changes depends on how the restriction is applied and therefore cannot be ascribed to low lung volume breathing per se.


1975 ◽  
Vol 38 (5) ◽  
pp. 768-773 ◽  
Author(s):  
N. N. Stanley ◽  
M. D. Altose ◽  
S. G. Kelsen ◽  
C. F. Ward ◽  
N. S. Cherniack

Experiments were conducted on human subjects to study the effect of lung inflation during breath holding on respiratory drive. Two series of experiments were performed: the first to examine respiratory drive during a single breath hold, the second designed to examine the sustained effect of lung inflation on subsequent breath holds. The experiments involved breath holding begun either at the end of a normal expiration or after a maximum inspiration. When breath holding was repeated at 10-min intervals, the increase in BHT produced by lung inflation was greater in short breath holds (after CO2 rebreathing) than in long breath holds (after hyperventilation). If breath holds were made in rapid succession, the first breath hold was much longer when made at total lung capacity than at functional residual capacity, but this effect of lung inflation diminished in subsequent breath holds. It is concluded that the inhibitory effect of lung inflation decays during breath holding and is regained remarkably slowly during the period of breathing immediately after breath holding.


2009 ◽  
Vol 107 (2) ◽  
pp. 408-416 ◽  
Author(s):  
Roberto Torchio ◽  
Alessandro Gobbi ◽  
Carlo Gulotta ◽  
Raffaele Dellacà ◽  
Marco Tinivella ◽  
...  

We investigated whether obesity is associated with airway hyperresponsiveness in otherwise healthy humans and, if so, whether this correlates with a restrictive lung function pattern or a decreased number of sighs at rest and/or during walking. Lung function was studied before and after inhaling methacholine (MCh) in 41 healthy subjects with body mass index ranging from 20 to 56. Breathing pattern was assessed during a 60-min rest period and a 30-min walk. The dose of MCh that produced a 50% decrease in the maximum expiratory flow measured in a body plethysmograph (PD50MCh) was inversely correlated with body mass index ( r2 = 0.32, P < 0.001) and waist circumference ( r2 = 0.25, P < 0.001). Significant correlations with body mass index were also found with the maximum changes in respiratory resistance ( r2 = 0.19, P < 0.001) and reactance ( r2 = 0.40, P < 0.001) measured at 5 Hz. PD50MCh was also positively correlated with functional residual capacity ( r2 = 0.56, P < 0.001) and total lung capacity ( r2 = 0.59, P < 0.001) in men, but not in women. Neither PD50MCh nor body mass index correlated with number of sighs, average tidal volume, ventilation, or breathing frequency. In this study, airway hyperresponsiveness was significantly associated with obesity in otherwise healthy subjects. In obese men, but not in women, airway hyperresponsiveness was associated with the decreases in lung volumes.


1995 ◽  
Vol 221 (5) ◽  
pp. 531-542 ◽  
Author(s):  
John J. Ferrara ◽  
D. Lynn Dyess ◽  
Guy L. Peeples ◽  
D. Paul Christenberry ◽  
W. Scott Roberts ◽  
...  

1979 ◽  
Vol 237 (6) ◽  
pp. H705-H712 ◽  
Author(s):  
J. R. Hales ◽  
L. B. Rowell ◽  
R. B. King

Radioactive microspheres (containing six different nuclide labels) were used to measure blood flow (BF) to most major organs of eight conscious baboons during heat stress. Cardiac output (CO), arterial mean pressure, and arterial PO2, PCO2, and pH did not change, but heart rate increased and stroke volume fell as body temperature increased by as much as 2.56 degrees C. Skin BF increased in all regions sampled so that the fraction of CO distributed to skin (not including feet and hands) increased from 3% (control) to 14%. Increased skin BF was compensated for by decreases in splanchnic (intestines, stomach, pancreas, and spleen) (35%), renal (27%), and possibly muscle BF. There was no change in BF to the brain, spinal cord, coronary, or subcutaneous adipose tissue during heating. Therefore, baboons show a generalized redistribution of BF during heat stress, so that increments in skin BF are provided without increases in CO, whereas man depends on changes in both; despite this latter difference between the baboon and man, the similarity in magnitude of the splanchnic and renal vasoconstriction between the two primates may indicate that the baboon would be a suitable animal model for investigations into mechanisms of changes in regional blood flow in man during heat stress.


2003 ◽  
Vol 10 (2) ◽  
pp. 128-138 ◽  
Author(s):  
Anne V Clough ◽  
Steven T Haworth ◽  
David L Roerig ◽  
Eric A Hoffman ◽  
Christopher A Dawson

2002 ◽  
Vol 92 (3) ◽  
pp. 1232-1238 ◽  
Author(s):  
Christopher N. Mills ◽  
Chantal Darquenne ◽  
G. Kim Prisk

We studied the effects on aerosol bolus inhalations of small changes in convective inhomogeneity induced by posture change from upright to supine in nine normal subjects. Vital capacity single-breath nitrogen washout tests were used to determine ventilatory inhomogeneity change between postures. Relative to upright, supine phase III slope was increased 33 ± 11% (mean ± SE, P < 0.05) and phase IV height increased 25 ± 11% ( P < 0.05), consistent with an increase in convective inhomogeneity likely due to increases in flow sequencing. Subjects also performed 0.5-μm-particle bolus inhalations to penetration volumes (Vp) between 150 and 1,200 ml during a standardized inhalation from residual volume to 1 liter above upright functional residual capacity. Mode shift (MS) in supine posture was more mouthward than upright at all Vp, changing by 11.6 ml at Vp = 150 ml ( P < 0.05) and 38.4 ml at Vp = 1,200 ml ( P < 0.05). MS and phase III slope changes correlated positively at deeper Vp. Deposition did not change at any Vp, suggesting that deposition did not cause the MS change. We propose that the MS change results from increased sequencing in supine vs. upright posture.


1978 ◽  
Vol 234 (3) ◽  
pp. H244-H252 ◽  
Author(s):  
S. F. Vatner ◽  
M. Pagani ◽  
J. D. Rutherford ◽  
R. W. Millard ◽  
W. T. Manders

The effects of intravenous infusion of nitroglycerin (NTG), 8 and 32 microgram/kg.min for 7 min, and of sublingual NTG, 1.2 mg, were examined on direct and continuous measurements of systemic, coronary, and regional hemodynamics, left ventricular (LV) dimensions, pressures, and myocardial contractility in conscious dogs. NTG induced sustained reductions in LV dimensions and transient increases in heart rate and dP/dt, and decreases in mean arterial pressure. Initially NTG increased cardiac output and flows to the coronary, mesenteric, renal, and iliac beds, while systemic and regional vascular resistances fell. Later, cardiac output, cardiac work, and mesenteric and iliac flows fell significantly below control, and significant vasoconstriction in the systemic as well as mesenteric, iliac, and coronary beds was observed at a time when LV end-diastolic dimensions were still significantly reduced. Peripheral vasoconstriction was not observed with systemic NTG in deafferented dogs or when NTG, 1 microgram/kg.min, was infused intra-arterially into the iliac bed. Thus, systemic NTG induces a biphasic response consisting of initial arteriolar vasodilation followed by vasoconstriction in the mesenteric, iliac, coronary and systemic beds, which is presumably due to longer lasting effects on preload and to secondary reflex responses to the drug.


Sign in / Sign up

Export Citation Format

Share Document