Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating

1992 ◽  
Vol 72 (6) ◽  
pp. 2271-2277 ◽  
Author(s):  
R. C. Read ◽  
P. Roberts ◽  
N. Munro ◽  
A. Rutman ◽  
A. Hastie ◽  
...  

Pseudomonas aeruginosa rhamnolipid causes ciliostasis and cell membrane damage to rabbit tissue, is a secretagogue in cats, and inhibits epithelial ion transport in sheep tissue. It could therefore perturb mucociliary clearance. We have investigated the effect of rhamnolipid on mucociliary transport in the anesthetized guinea pig and guinea pig and human respiratory epithelium in vitro. Application of rhamnolipid to the guinea pig tracheal mucosa reduced tracheal mucus velocity (TMV) in vivo in a dose-dependent manner: a 10-microgram bolus caused cessation of TMV without recovery; a 5-micrograms bolus reduced TMV over a period of 2 h by 22.6% (P = 0.037); a 2.5-microgram bolus caused no overall changes in TMV. The ultrastructure of guinea pig tracheal epithelium exposed to 10 micrograms of rhamnolipid in vivo was normal. Application of 1,000 micrograms/ml rhamnolipid had no effect on the ciliary beat frequency (CBF) of guinea pig tracheal rings in vitro after 30 min, but 250 micrograms/ml stopped ciliary beating after 3 h. Treatment with 100 micrograms/ml rhamnolipid caused immediate slowing of the CBF (P less than 0.01) of human nasal brushings (n = 7), which was maintained for 4 h. Mono- and dirhamnolipid had equivalent effects. The CBF of human nasal turbinate organ culture was also slowed by 100 micrograms/ml rhamnolipid, but only after 4 h (CBF test, 9.87 +/- 0.41 Hz; control, 11.48 +/- 0.27 Hz; P less than 0.05, n = 6), and there was subsequent recovery by 14 h.(ABSTRACT TRUNCATED AT 250 WORDS)

2002 ◽  
Vol 282 (3) ◽  
pp. L556-L562 ◽  
Author(s):  
Manako Taira ◽  
Jun Tamaoki ◽  
Kazuyuki Nishimura ◽  
Junko Nakata ◽  
Mitsuko Kondo ◽  
...  

To examine the effect of adenosine A3 receptor stimulation on airway mucociliary clearance, we measured transport of Evans blue dye in rabbit trachea in vivo and ciliary motility of epithelium by the photoelectric method in vitro. Mucociliary transport was enhanced dose dependently by the selective A3 agonist N 6-(3-iodobenzyl)-5′- N-methylcarbamoyladenosine (IB-MECA) and to a lesser extent by the less-selective N 6-2-(4-amino-3-iodophenyl)ethyladenosine, whereas the A1 agonist N-cyclopentyladenosine (CPA) and the A2 agonist CGS-21680 had no effect. The effect of IB-MECA was abolished by pretreatment with the selective A3 antagonist MRS-1220 but not by the A1 antagonist 1,3-dipropyly-8-cyclopentylxanthine or the A2 antagonist 3,7-dimethyl-l-propargylxanthine. Epithelial ciliary beat frequency was increased by IB-MECA in a concentration-dependent manner, the maximal increase being 33%, and this effect was inhibited by MRS-1220. The IB-MECA-induced ciliary stimulation was not altered by the Rp diastereomer of cAMP but was greatly inhibited by Ca2+-free medium containing BAPTA-AM. Incubation with IB-MECA increased intracellular Ca2+ contents. Therefore, A3 agonist enhances airway mucociliary clearance probably through Ca2+-mediated stimulation of ciliary motility of airway epithelium.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jomkuan Theprungsirikul ◽  
Sladjana Skopelja-Gardner ◽  
Ashley S. Burns ◽  
Rachel M. Wierzbicki ◽  
William F. C. Rigby

Chronic Pseudomonas aeruginosa infection mysteriously occurs in the airways of patients with cystic fibrosis (CF), bronchiectasis (BE), and chronic obstructive pulmonary disease (COPD) in the absence of neutrophil dysfunction or neutropenia and is strongly associated with autoimmunity to bactericidal permeability-increasing protein (BPI). Here, we define a critical role for BPI in in vivo immunity against P. aeruginosa. Wild type and BPI-deficient (Bpi-/-) mice were infected with P. aeruginosa, and bacterial clearance, cell infiltrates, cytokine production, and in vivo phagocytosis were quantified. Bpi-/- mice exhibited a decreased ability to clear P. aeruginosa in vivo in concert with increased neutrophil counts and cytokine release. Bpi-/- neutrophils displayed decreased phagocytosis that was corrected by exogenous BPI in vitro. Exogenous BPI also enhanced clearance of P. aeruginosa in Bpi-/- mice in vivo by increasing P. aeruginosa uptake by neutrophils in a CD18-dependent manner. These data indicate that BPI plays an essential role in innate immunity against P. aeruginosa through its opsonic activity and suggest that perturbations in BPI levels or function may contribute to chronic lung infection with P. aeruginosa.


2007 ◽  
Vol 189 (19) ◽  
pp. 6870-6881 ◽  
Author(s):  
Gregory T. Robertson ◽  
Timothy B. Doyle ◽  
Qun Du ◽  
Leonard Duncan ◽  
Khisimuzi E. Mdluli ◽  
...  

ABSTRACT Drug efflux systems contribute to the intrinsic resistance of Pseudomonas aeruginosa to many antibiotics and biocides and hamper research focused on the discovery and development of new antimicrobial agents targeted against this important opportunistic pathogen. Using a P. aeruginosa PAO1 derivative bearing deletions of opmH, encoding an outer membrane channel for efflux substrates, and four efflux pumps belonging to the resistance nodulation/cell division class including mexAB-oprM, we identified a small-molecule indole-class compound (CBR-4830) that is inhibitory to growth of this efflux-compromised strain. Genetic studies established MexAB-OprM as the principal pump for CBR-4830 and revealed MreB, a prokaryotic actin homolog, as the proximal cellular target of CBR-4830. Additional studies establish MreB as an essential protein in P. aeruginosa, and efflux-compromised strains treated with CBR-4830 transition to coccoid shape, consistent with MreB inhibition or depletion. Resistance genetics further suggest that CBR-4830 interacts with the putative ATP-binding pocket in MreB and demonstrate significant cross-resistance with A22, a structurally unrelated compound that has been shown to promote rapid dispersion of MreB filaments in vivo. Interestingly, however, ATP-dependent polymerization of purified recombinant P. aeruginosa MreB is blocked in vitro in a dose-dependent manner by CBR-4830 but not by A22. Neither compound exhibits significant inhibitory activity against mutant forms of MreB protein that bear mutations identified in CBR-4830-resistant strains. Finally, employing the strains and reagents prepared and characterized during the course of these studies, we have begun to investigate the ability of analogues of CBR-4830 to inhibit the growth of both efflux-proficient and efflux-compromised P. aeruginosa through specific inhibition of MreB function.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hongping Yin ◽  
Yifeng Deng ◽  
Huafu Wang ◽  
Wugao Liu ◽  
Xiyi Zhuang ◽  
...  

Abstract Green tea, a water extract of non-fermented leaves of Camellia sinensis L., is one of the nonalcoholic beverages in China. It is becoming increasingly popular worldwide, because of its refreshing, mild stimulant and medicinal properties. Here we examined the quorum sensing inhibitory potentials of tea polyphenols (TP) as antivirulence compounds both in vitro and in vivo. Biosensor assay data suggested minimum inhibitory concentrations (MICs) of TP against selected pathogens were 6.25 ~ 12.5 mg/mL. At sub-MIC, TP can specifically inhibit the production of violacein in Chromobacterium violaceum 12472 with almost 98% reduction at 3.125 mg/mL without affecting its growth rate. Moreover, TP exhibited inhibitory effects on virulence phenotypes regulated by QS in Pseudomonas aeruginosa. The total proteolytic activity, elastase, swarming motility and biofilm formation were reduced in a concentration-dependent manner. In vivo, TP treatment resulted in the reduction of P. aeruginosa pathogenicity in Caenorhabditis elegans. When its concentration was 3.125 mg/mL, the survival rate reached 63.3%. In the excision wound infection model, the wound contraction percentage in treatment groups was relatively increased and the colony-forming units (CFU) in the wound area were significantly decreased. These results suggested that TP could be developed as a novel non-antibiotic QS inhibitor without killing the bacteria but as an antivirulence compound to control bacterial infection.


1985 ◽  
Vol 69 (s12) ◽  
pp. 29P-29P ◽  
Author(s):  
R. Wilson ◽  
T. Pitt ◽  
G. Taylor ◽  
D. Watson ◽  
J. MacDermot ◽  
...  

2016 ◽  
Vol 60 (5) ◽  
pp. 2620-2626 ◽  
Author(s):  
Wang Hengzhuang ◽  
Zhijun Song ◽  
Oana Ciofu ◽  
Edvar Onsøyen ◽  
Philip D. Rye ◽  
...  

ABSTRACTBiofilm growth is a universal survival strategy for bacteria, providing an effective and resilient approach for survival in an otherwise hostile environment. In the context of an infection, a biofilm provides resistance and tolerance to host immune defenses and antibiotics, allowing the biofilm population to survive and thrive under conditions that would destroy their planktonic counterparts. Therefore, the disruption of the biofilm is a key step in eradicating persistent bacterial infections, as seen in many types of chronic disease. In these studies, we used bothin vitrominimum biofilm eradication concentration (MBEC) assays and anin vivomodel of chronic biofilm infection to demonstrate the biofilm-disrupting effects of an alginate oligomer, OligoG CF-5/20. Biofilm infections were established in mice by tracheal instillation of a mucoid clinical isolate ofPseudomonas aeruginosaembedded in alginate polymer beads. The disruption of the biofilm by OligoG CF-5/20 was observed in a dose-dependent manner over 24 h, with up to a 2.5-log reduction in CFU in the infected mouse lungs. Furthermore,in vitroassays showed that 5% OligoG CF-5/20 significantly reduced the MBEC for colistin from 512 μg/ml to 4 μg/ml after 8 h. These findings support the potential for OligoG CF-5/20 as a biofilm disruption agent which may have clinical value in reducing the microbial burden in chronic biofilm infections.


2022 ◽  
Author(s):  
Alessandro Carabelli ◽  
Jean-Frederic Dubern ◽  
Maria Papangeli ◽  
Nicola E. Farthing ◽  
Olutoba Sanni ◽  
...  

Non-toxic, biocompatible materials that inhibit bacterial biofilm formation on implanted medical devices and so prevent infection are urgently required. Weakly amphiphilic acrylate polymers with rigid hydrocarbon pendant groups resist bacterial biofilm formation in vitro and in vivo but the biological mechanism involved is not known. By comparing biofilm formation on polymers with the same acrylate backbone but with different pendant groups, we show that poly(ethylene glycol dicyclopentenyl ether acrylate; pEGdPEA) but not neopentyl glycol propoxylate diacrylate (pNGPDA) inhibited the transition from reversible to irreversible attachment. By using single-cell tracking algorithms and controlled flow microscopy we observed that fewer Pseudomonas aeruginosa PAO1 cells accumulated on pEGdPEA compared with pNGPDA. Bacteria reaching the pEGdPEA surface exhibited shorter residence times and greater asymmetric division with more cells departing from the surface post-cell division, characteristic of reversible attachment. Migrating cells on pEGdPEA deposited fewer exopolysaccharide trails and were unable top adhere strongly. Discrimination between the polymers required type IV pili and flagella. On pEGdPEA, the lack of accumulation of cyclic diguanylate or expression of sadB were consistent with the failure to transit from reversible to irreversible attachment. Constitutive expression of sadB increased surface adhesion sufficient to enable P. aeruginosa to form biofilms in a Mot flagellar stator dependent manner. These findings were extendable to other biofilm resistant acrylates highlighting their unique ability to inhibit reversible to irreversible attachment as a mechanism for preventing biofilm-associated infections.


1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


Sign in / Sign up

Export Citation Format

Share Document