Ambulatory foot contact monitor to estimate metabolic cost of human locomotion

1994 ◽  
Vol 76 (4) ◽  
pp. 1818-1822 ◽  
Author(s):  
R. W. Hoyt ◽  
J. J. Knapik ◽  
J. F. Lanza ◽  
B. H. Jones ◽  
J. S. Staab

The rate of metabolic energy expenditure during locomotion (Mloco) is proportional to body weight (Wb) divided by the time during each stride that a single foot contacts the ground (tc) (Nature Lond. 346: 265–267, 1990). Using this knowledge, we developed an electronic foot contact monitor. Our objective was to derive and cross-validate an equation for estimation Mloco from Wb/tc. Twelve males were tested [age = 19.4 +/- 1.4 (SD) yr, Wb = 78.4 +/- 8.0 kg] during horizontal treadmill walking (0.89, 1.34, and 1.79 m/s) and running (2.46, 2.91, and 3.35 m/s). Measured Mloco was defined as the total rate of energy expenditure, measured by indirect calorimetry, minus the estimated rate of resting energy expenditure. The equation to estimate Mloco was derived in six randomly selected subjects: Mloco = 3.702.(Wb/tc) - 149.6 (r2 = 0.93). Cross-validation in the remaining six subjects showed that estimated and measured Mloco were highly correlated (r2 = 0.97). The average individual error between estimated and measured Mloco was 0% (range -22 to 29%). In conclusion, Mloco can be accurately estimated from Wb and measurements of tc made by an ambulatory foot contact monitor.

Author(s):  
DB Kowalsky ◽  
JR Rebula ◽  
LV Ojeda ◽  
PG Adamczyk ◽  
AD Kuo

AbstractHumans often traverse real-world environments with a variety of surface irregularities and inconsistencies, which can disrupt steady gait and require additional effort. Such effects have, however, scarcely been demonstrated quantitatively, because few laboratory biomechanical measures apply outdoors. Walking can nevertheless be quantified by other means. In particular, the foot’s trajectory in space can be reconstructed from foot-mounted inertial measurement units (IMUs), to yield measures of stride and associated variabilities. But it remains unknown whether such measures are related to metabolic energy expenditure. We therefore quantified the effect of five different outdoor terrains on foot motion (from IMUs) and net metabolic rate (from oxygen consumption) in healthy adults (N = 10; walking at 1.25 m/s). Energy expenditure increased significantly (P < 0.05) in the order Sidewalk, Dirt, Gravel, Grass, and Woodchips, with Woodchips about 27% costlier than Sidewalk. Terrain type also affected measures, particularly stride variability and virtual foot clearance (swing foot’s lowest height above consecutive footfalls). In combination, such measures can also roughly predict metabolic cost (adjusted R2 = 0.52, partial least squares regression), and even discriminate between terrain types (10% reclassification error). Body-worn sensors can characterize how uneven terrain affects gait, gait variability, and metabolic cost in the real world.


2019 ◽  
Author(s):  
Anne D. Koelewijn ◽  
Dieter Heinrich ◽  
Antonie J. van den Bogert

AbstractThis paper compares predictions of metabolic energy expenditure in gait using seven metabolic energy expenditure models to assess their correlation with experimental data. Ground reaction forces, marker data, and pulmonary gas exchange data were recorded for six walking trials at combinations of two speeds, 0.8 m/s and 1.3 m/s, and three inclines, −8% (downhill), level, and 8% (uphill). The metabolic cost, calculated with the metabolic energy models was compared to the metabolic cost from the pulmonary gas exchange rates. A repeated measures correlation showed that all models correlated well with experimental data, with correlations of at least 0.9. The model by Bhargava et al. [7] and the model by Lichtwark and Wilson [21] had the highest correlation, 0.96. The model by Margaria [23] predicted the increase in metabolic cost following a change in dynamics best in absolute terms.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0228682
Author(s):  
Daniel B. Kowalsky ◽  
John R. Rebula ◽  
Lauro V. Ojeda ◽  
Peter G. Adamczyk ◽  
Arthur D. Kuo

Humans often traverse real-world environments with a variety of surface irregularities and inconsistencies, which can disrupt steady gait and require additional effort. Such effects have, however, scarcely been demonstrated quantitatively, because few laboratory biomechanical measures apply outdoors. Walking can nevertheless be quantified by other means. In particular, the foot’s trajectory in space can be reconstructed from foot-mounted inertial measurement units (IMUs), to yield measures of stride and associated variabilities. But it remains unknown whether such measures are related to metabolic energy expenditure. We therefore quantified the effect of five different outdoor terrains on foot motion (from IMUs) and net metabolic rate (from oxygen consumption) in healthy adults (N = 10; walking at 1.25 m/s). Energy expenditure increased significantly (P < 0.05) in the order Sidewalk, Dirt, Gravel, Grass, and Woodchips, with Woodchips about 27% costlier than Sidewalk. Terrain type also affected measures, particularly stride variability and virtual foot clearance (swing foot’s lowest height above consecutive footfalls). In combination, such measures can also roughly predict metabolic cost (adjusted R2 = 0.52, partial least squares regression), and even discriminate between terrain types (10% reclassification error). Body-worn sensors can characterize how uneven terrain affects gait, gait variability, and metabolic cost in the real world.


2007 ◽  
Vol 04 (03) ◽  
pp. 507-528 ◽  
Author(s):  
DANIEL P. FERRIS ◽  
GREGORY S. SAWICKI ◽  
MONICA A. DALEY

Technological advances in robotic hardware and software have enabled powered exoskeletons to move from science fiction to the real world. The objective of this article is to emphasize two main points for future research. First, the design of future devices could be improved by exploiting biomechanical principles of animal locomotion. Two goals in exoskeleton research could particularly benefit from additional physiological perspective: (i) reduction in the metabolic energy expenditure of the user while wearing the device, and (ii) minimization of the power requirements for actuating the exoskeleton. Second, a reciprocal potential exists for robotic exoskeletons to advance our understanding of human locomotor physiology. Experimental data from humans walking and running with robotic exoskeletons could provide important insight into the metabolic cost of locomotion that is impossible to gain with other methods. Given the mutual benefits of collaboration, it is imperative that engineers and physiologists work together in future studies on robotic exoskeletons for human locomotion.


2018 ◽  
Author(s):  
Allison H. Gruber ◽  
Brian R. Umberger ◽  
Ross H. Miller ◽  
Joseph Hamill

ABSTRACTForefoot running is advocated to improve running economy because of increased elastic energy storage than rearfoot running. This claim has not been assessed with methods that predict the elastic energy contribution to positive work or estimate muscle metabolic cost. The purpose of this study was to compare the mechanical work and metabolic cost of the gastrocnemius and soleus between rearfoot and forefoot running. Seventeen rearfoot and seventeen forefoot runners ran over-ground with their habitual footfall pattern (3.33-3.68m•s−1) while collecting motion capture and ground reaction force data. Ankle and knee joint angles and ankle joint moments served as inputs into a musculoskeletal model that calculated the mechanical work and metabolic energy expenditure of each muscle using Hill-based muscle models with contractile (CE) and series elastic (SEE) elements. A mixed-factor ANOVA assessed the difference between footfall patterns and groups (α=0.05). Forefoot running resulted in greater SEE mechanical work in the gastrocnemius than rearfoot running but no differences were found in CE mechanical work or CE metabolic energy expenditure. Forefoot running resulted in greater soleus SEE and CE mechanical work and CE metabolic energy expenditure than rearfoot running. The metabolic cost associated with greater CE velocity, force production, and activation during forefoot running may outweigh any metabolic energy savings associated with greater SEE mechanical work. Therefore, there was no energetic benefit at the triceps surae for one footfall pattern or the other. The complex CE-SEE interactions must be considered when assessing muscle metabolic cost, not just the amount of SEE strain energy.


2019 ◽  
Vol 5 (12) ◽  
pp. eaax1065 ◽  
Author(s):  
Samuel S. Urlacher ◽  
J. Josh Snodgrass ◽  
Lara R. Dugas ◽  
Lawrence S. Sugiyama ◽  
Melissa A. Liebert ◽  
...  

Children’s metabolic energy expenditure is central to evolutionary and epidemiological frameworks for understanding variation in human phenotype and health. Nonetheless, the impact of a physically active lifestyle and heavy burden of infectious disease on child metabolism remains unclear. Using energetic, activity, and biomarker measures, we show that Shuar forager-horticulturalist children of Amazonian Ecuador are ~25% more physically active and, in association with immune activity, have ~20% greater resting energy expenditure than children from industrial populations. Despite these differences, Shuar children’s total daily energy expenditure, measured using doubly labeled water, is indistinguishable from industrialized counterparts. Trade-offs in energy allocation between competing physiological tasks, within a constrained energy budget, appear to shape childhood phenotypic variation (e.g., patterns of growth). These trade-offs may contribute to the lifetime obesity and metabolic health disparities that emerge during rapid economic development.


Gerontology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Rebecca L. Krupenevich ◽  
Owen N. Beck ◽  
Gregory S. Sawicki ◽  
Jason R. Franz

Older adults walk slower and with a higher metabolic energy expenditure than younger adults. In this review, we explore the hypothesis that age-related declines in Achilles tendon stiffness increase the metabolic cost of walking due to less economical calf muscle contractions and increased proximal joint work. This viewpoint may motivate interventions to restore ankle muscle-tendon stiffness, improve walking mechanics, and reduce metabolic cost in older adults.


Sign in / Sign up

Export Citation Format

Share Document