scholarly journals Regulation of ventilatory muscle blood flow

1996 ◽  
Vol 81 (4) ◽  
pp. 1455-1468 ◽  
Author(s):  
Sabah N. A. Hussain

Hussain, Sabah N. A. Regulation of ventilatory muscle blood flow. J. Appl. Physiol. 81(4): 1455–1468, 1996.—The ventilatory muscles perform various functions such as ventilation of the lungs, postural stabilization, and expulsive maneuvers (e.g., coughing). They are classified in functional terms as inspiratory muscles, which include the diaphragm, parasternal intercostal, external intercostal, scalene, and sternocleidomastoid muscles; and expiratory muscles, which include the abdominal muscles, internal intercostal, and triangularis sterni. The ventilatory muscles require high-energy phosphate compounds such as ATP to fuel the biochemical and physical processes of contraction and relaxation. Maintaining adequate intracellular concentrations of these compounds depends on adequate intracellular substrate levels and delivery of these substrates by arterial blood flow. In addition to the delivery of substrates, blood flow influences muscle function through the removal of metabolic by-products, which, if accumulated, could exert negative effects on several excitatory and contractile processes. Skeletal muscle substrate utilization is also dependent on the ability to extract substrates from arterial blood, which, in turn, is accomplished by increasing the total number of perfused capillaries. It follows that matching perfusion to metabolic demands is critical for the maintenance of normal muscle contractile function. In this article, I review the factors that influence ventilatory muscle blood flow. Major emphasis is placed on the diaphragm because a large number of published reports deal with diaphragmatic blood flow. The second reason for focusing on the diaphragm is because it is the largest and most important inspiratory muscle.

1984 ◽  
Vol 246 (3) ◽  
pp. R331-R337 ◽  
Author(s):  
C. H. Lang ◽  
G. J. Bagby ◽  
J. L. Ferguson ◽  
J. J. Spitzer

Cardiac output (CO) and the distribution of blood flow were studied in chronically catheterized conscious rats during sustained (4 days) sepsis. Septicemia was induced by intraperitoneal administration of a pooled fecal inoculum, and tissue blood flow and CO were determined daily with 15-micron radioactive microspheres. Mean arterial blood pressure (MABP, 113 +/- 2 mmHg), CO (244.5 +/- 11.4 ml X min-1 X kg-1), and total peripheral resistance (TPR, 1.36 +/- 0.07 mmHg X ml-1 X min) were stable in control rats over the 4 days postinoculation. Septic animals showed a consistent tachycardia with MABP significantly reduced only on days 3 and 4 (86 +/- 4 mmHg). A hyperdynamic response to sepsis was indicated by an elevated CO (27%) and similarly reduced TPR on day 2. The calculated stroke volume averaged 0.22 +/- 0.01 ml/beat and did not vary over time or between the two groups. There was a 40-70% increase in blood flow to the heart, spleen, adrenal glands, and small intestine, and a greater than sixfold increase in hepatic arterial blood flow. The sustained elevation of coronary blood flow, observed in septic animals, was independent of myocardial work and is consistent with impaired myocardial function. Pancreas, stomach, and skeletal muscle blood flow was consistently compromised (24, 39, and 52%, respectively) during sepsis. Blood flow in other organs remained unchanged over time. Sepsis-induced changes in the fractional distribution of blood flow to various organs were similar to those described for absolute flow. (ABSTRACT TRUNCATED AT 250 WORDS)


Medicina ◽  
2020 ◽  
Vol 56 (7) ◽  
pp. 338
Author(s):  
Francesco Amendola ◽  
Luca Vaienti ◽  
Giuseppe Cottone ◽  
Giovanna Zaccaria ◽  
Zvi Steinberger ◽  
...  

Background and objectives: The metabolic response after exercise causes a significant increase in the muscle blood flow. While these effects are demonstrated for intra-muscular vessels, there is no evidence about the inter-muscular vessels, such as the septocutaneous perforators supplying the skin after they branch out from the deep source artery. The aim of our prospective study was to quantify the changes in the anterior tibial artery perforators arterial blood flow after mild isotonic exercise in a young and healthy population. Material and Methods: We performed a prospective analysis of 34 patients who were admitted to the Plastic Surgery Department from December 2019 to April 2020. Flow velocities of two previously identified anterior tibial artery perforators were recorded both before and after 10 complete flexion-extensions of the foot. The time to revert to basal flow was measured. We further classified the overmentioned patients based on their level of physical activity. Results: We registered a significant increase in systolic, diastolic and mean blood flow velocities both in proximal and distal anterior tibial artery perforators after exercise. Fitter patients exhibited a higher increase in proximal leg perforators than those who did less than three aerobic workouts a week. The time to return to basal flow ranged from 60 to 90 s. Conclusions: This was the first study to describe the effect of muscular activity on perforators blood flow. Even mild exercise significantly increases the perforator flow. Waiting at least two minutes at rest before performing the Doppler study, thus avoiding involved muscle activation, can notably improve the reliability of the pre-operative planning.


1993 ◽  
Vol 265 (5) ◽  
pp. R1076-R1083 ◽  
Author(s):  
C. Duchamp ◽  
H. Barre

Despite their lack of brown adipose tissue, 6-wk-old cold-acclimated muscovy ducklings (4 degrees C; CA) exhibit nonshivering thermogenesis (NST) in the cold. To determine the site of this NST, the regional distribution of blood flow was measured by the microsphere method in the thermoneutral zone (25 degrees C) and during acute exposure to cold (8 degrees C). Ducklings reared at thermal neutrality (TN), which use shivering to produce extra heat in the cold, were compared with CA ducklings, which substitute NST for shivering. Further, the contribution of skeletal muscle thermogenesis to the increased heat production in the cold was estimated by measuring leg muscle blood flow and arteriovenous difference in oxygen content [(a-v)O2] across the leg, enabling an estimation of muscle O2 consumption. During cold exposure, a similar increase in total leg muscle blood flow occurred in TN and CA ducklings (+127 and +130% respectively), while hepatic arterial blood flow increased less (+56 to +37%, respectively). This rise in blood flow was accounted for by an increase in cardiac output, which was smaller in CA than in TN ducklings, and in both groups by a redistribution of blood flow to the most thermogenic organs (skeletal muscles and liver). The (a-v)O2 across the leg was not changed by cold exposure, indicating that the increase in leg muscle O2 consumption resulted mainly from the increase in blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 3 (90) ◽  
Author(s):  
Albinas Grūnovas ◽  
Jonas Poderys ◽  
Eugenijus Trinkūnas ◽  
Viktoras Šilinskas

Research  background  and  hypothesis.  Blood  flow  intensity  plays  an  important  role  in  the  recovery  after exercising. Research aim was to compare the effect of passive rest and passive foot movement on calf muscle blood flow applying dosed static physical loads. Research methods. Eighteen adult males were divided into two sub-groups. Participants of the study performed two isometric 30-s workouts at 75% of MVC with 20 minutes interval for the recovery between the workouts. During the first stage one sub-group performed workout and a passive recovery was applied while the subjects of the second sub-group performed passive foot flexion movements. During the second stage the form of recovery was changed.  Arterial  blood  flow  intensity  was  registered  during  venous  occlusion  plethysmography  and  passive  foot  flexion  movements were performed by special mechanical equipment.Research results. The results obtained during the study showed that maximal increase of blood flow registered at 21 second after the workout was (52.0 ± 2.9 ml/min/100 ml), while the application of passive movements before the workout decreased the blood flow intensity (45.0  ± 2.6 ml/min/100 ml). It was significantly (p  < 0.05) lower compared to passive rest. Discussion and conclusions. These effects can be explained by reduced venous filling and increased venous vascular reserve capacity in the calves. The results obtained during this research allow concluding that passive foot flexion manoeuvre applied before the isometric workload faster decreases the blood flow intensity during the  recovery.Keywords: arterial blood flow recovery, isometric physical workout, passive foot movement, passive rest.


2013 ◽  
Vol 23 (2) ◽  
Author(s):  
Xenia Descovich ◽  
Giuseppe Pontrelli ◽  
Sauro Succi ◽  
Simone Melchionna ◽  
Manfred Bammer

Children ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 353
Author(s):  
Jayasree Nair ◽  
Lauren Davidson ◽  
Sylvia Gugino ◽  
Carmon Koenigsknecht ◽  
Justin Helman ◽  
...  

The optimal timing of cord clamping in asphyxia is not known. Our aims were to determine the effect of ventilation (sustained inflation–SI vs. positive pressure ventilation–V) with early (ECC) or delayed cord clamping (DCC) in asphyxiated near-term lambs. We hypothesized that SI with DCC improves gas exchange and hemodynamics in near-term lambs with asphyxial bradycardia. A total of 28 lambs were asphyxiated to a mean blood pressure of 22 mmHg. Lambs were randomized based on the timing of cord clamping (ECC—immediate, DCC—60 s) and mode of initial ventilation into five groups: ECC + V, ECC + SI, DCC, DCC + V and DCC + SI. The magnitude of placental transfusion was assessed using biotinylated RBC. Though an asphyxial bradycardia model, 2–3 lambs in each group were arrested. There was no difference in primary outcomes, the time to reach baseline carotid blood flow (CBF), HR ≥ 100 bpm or MBP ≥ 40 mmHg. SI reduced pulmonary (PBF) and umbilical venous (UV) blood flow without affecting CBF or umbilical arterial blood flow. A significant reduction in PBF with SI persisted for a few minutes after birth. In our model of perinatal asphyxia, an initial SI breath increased airway pressure, and reduced PBF and UV return with an intact cord. Further clinical studies evaluating the timing of cord clamping and ventilation strategy in asphyxiated infants are warranted.


2015 ◽  
Vol 26 (8) ◽  
pp. 2779-2789 ◽  
Author(s):  
Claus Christian Pieper ◽  
Winfried A. Willinek ◽  
Daniel Thomas ◽  
Hojjat Ahmadzadehfar ◽  
Markus Essler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document