Continuous enteral nutrition attenuates pulmonary edema in rats exposed to 100% oxygen

2000 ◽  
Vol 89 (5) ◽  
pp. 1759-1765 ◽  
Author(s):  
Phillip Factor ◽  
Karen Ridge ◽  
John Alverdy ◽  
Jacob I. Sznajder

Adult rats exposed to hyperoxia develop anorexia, weight loss, and a lung injury characterized by pulmonary edema and decreased lung liquid clearance. We hypothesized that maintenance of nutrition during hyperoxia could attenuate hyperoxia-induced pulmonary edema. To test this hypothesis, we enterally fed adult male Sprague-Dawley rats via gastrostomy tubes and exposed them to oxygen (inspired O2 fraction >0.95) for 64 h. In contrast to controls, enterally fed hyperoxic animals did not lose weight and had smaller pleural effusions and wet-to-dry weight ratios (a measure of lung edema) that were not different from room air controls. Enterally fed rats exposed to hyperoxia had increased levels of mRNA for the Na+-K+-ATPase α1- and β1-subunits and glutathione peroxidase. These findings suggest that maintenance of nutrition during an oxidative lung injury reduces lung edema, perhaps by allowing for continued expression and function of protective proteins such as the Na+-K+-ATPase.

2006 ◽  
Vol 291 (5) ◽  
pp. L1068-L1078 ◽  
Author(s):  
Anette M. Kunig ◽  
Vivek Balasubramaniam ◽  
Neil E. Markham ◽  
Gregory Seedorf ◽  
Jason Gien ◽  
...  

Recent studies suggest that VEGF may worsen pulmonary edema during acute lung injury (ALI), but, paradoxically, impaired VEGF signaling contributes to decreased lung growth during recovery from ALI due to neonatal hyperoxia. To examine the diverse roles of VEGF in the pathogenesis of and recovery from hyperoxia-induced ALI, we hypothesized that exogenous recombinant human VEGF (rhVEGF) treatment during early neonatal hyperoxic lung injury may increase pulmonary edema but would improve late lung structure during recovery. Sprague-Dawley rat pups were placed in a hyperoxia chamber (inspired O2 fraction 0.9) for postnatal days 2–14. Pups were randomized to daily intramuscular injections of rhVEGF165 (20 μg/kg) or saline (controls). On postnatal day 14, rats were placed in room air for a 7-day recovery period. At postnatal days 3, 14, and 21, rats were killed for studies, which included body weight and wet-to-dry lung weight ratio, morphometric analysis [including radial alveolar counts (RAC), mean linear intercepts (MLI), and vessel density], and lung endothelial NO synthase (eNOS) protein content by Western blot analysis. Compared with room air controls, hyperoxia increased pulmonary edema by histology and wet-to-dry lung weight ratios at postnatal day 3, which resolved by day 14. Although treatment with rhVEGF did not increase edema in control rats, rhVEGF increased wet-to-dry weight ratios in hyperoxia-exposed rats at postnatal days 3 and 14 ( P < 0.01). Compared with room air controls, hyperoxia decreased RAC and increased MLI at postnatal days 14 and 21. Treatment with VEGF resulted in increased RAC by 181% and decreased MLI by 55% on postnatal day 14 in the hyperoxia group ( P < 0.01). On postnatal day 21, RAC was increased by 176% and MLI was decreased by 58% in the hyperoxia group treated with VEGF. rhVEGF treatment during hyperoxia increased eNOS protein on postnatal day 3 by threefold ( P < 0.05). We conclude that rhVEGF treatment during hyperoxia-induced ALI transiently increases pulmonary edema but improves lung structure during late recovery. We speculate that VEGF has diverse roles in hyperoxia-induced neonatal lung injury, contributing to lung edema during the acute stage of ALI but promoting repair of the lung during recovery.


2018 ◽  
Vol 33 (1) ◽  
pp. 132-144
Author(s):  
Tracey A Larson ◽  
Casey E O’Neill ◽  
Michaela P Palumbo ◽  
Ryan K Bachtell

Background: Caffeine consumption by children and adolescents has risen dramatically in recent years, yet the lasting effects of caffeine consumption during adolescence remain poorly understood. Aim: These experiments explore the effects of adolescent caffeine consumption on cocaine self-administration and seeking using a rodent model. Methods: Sprague-Dawley rats consumed caffeine for 28 days during the adolescent period. Following the caffeine consumption period, the caffeine solution was replaced with water for the remainder of the experiment. Age-matched control rats received water for the duration of the study. Behavioral testing in a cocaine self-administration procedure occurred during adulthood (postnatal days 62–82) to evaluate how adolescent caffeine exposure influenced the reinforcing properties of cocaine. Cocaine seeking was also tested during extinction training and reinstatement tests following cocaine self-administration. Results: Adolescent caffeine consumption increased the acquisition of cocaine self-administration and increased performance on different schedules of reinforcement. Consumption of caffeine in adult rats did not produce similar enhancements in cocaine self-administration. Adolescent caffeine consumption also produced an upward shift in the U-shaped dose response curve on cocaine self-administration maintained on a within-session dose-response procedure. Adolescent caffeine consumption had no effect on cocaine seeking during extinction training or reinstatement of cocaine seeking by cues or cocaine. Conclusions: These findings suggest that caffeine consumption during adolescence may enhance the reinforcing properties of cocaine, leading to enhanced acquisition that may contribute to increased addiction vulnerability.


2012 ◽  
Vol 63 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Xiu-Quan Shi ◽  
Wei Yan ◽  
Ke-Yue Wang ◽  
Qi-Yuan Fan ◽  
Yan Zou

We tested the hypothesis that dietary fi bre (DF) has protective effects against manganese (Mn)-induced neurotoxicity. Forty-eight one-month old Sprague-Dawley rats were randomly divided into six groups: control, 16 % DF, Mn (50 mg kg-1 body weight), Mn+ 4 % DF, Mn+ 8 % DF, and Mn+ 16 % DF. After oral administration of Mn (as MnCl2) by intragastric tube during one month, we determined Mn concentrations in the blood, liver, cerebral cortex, and stool and tested neurobehavioral functions. Administration of Mn was associated with increased Mn concentration in the blood, liver, and cerebral cortex and increased Mn excretion in the stool. Aberrations in neurobehavioral performance included increases in escape latency and number of errors and decrease in step-down latency. Irrespective of the applied dose, the addition of DF in forage decreased tissue Mn concentrations and increased Mn excretion rate in the stool by 20 % to 35 %. All neurobehavioral aberrations were also improved. Our fi ndings show that oral exposure to Mn may cause neurobehavioral abnormalities in adult rats that could be effi ciently alleviated by concomitant supplementation of DF in animal feed.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5006
Author(s):  
Pema Raj ◽  
Karen Sayfee ◽  
Mihir Parikh ◽  
Liping Yu ◽  
Jeffrey Wigle ◽  
...  

The development and progression of heart failure (HF) due to myocardial infarction (MI) is a major concern even with current optimal therapy. Resveratrol is a plant polyphenol with cardioprotective properties. Sacubitril/valsartan is known to be beneficial in chronic HF patients. In this study, we investigated the comparative and combinatorial benefits of resveratrol with sacubitril/valsartan alongside an active comparator valsartan in MI-induced male Sprague Dawley rats. MI-induced and sham-operated animals received vehicle, resveratrol, sacubitril/valsartan, valsartan alone or sacubitril/valsartan + resveratrol for 8 weeks. Echocardiography was performed at the endpoint to assess cardiac structure and function. Cardiac oxidative stress, inflammation, fibrosis, brain natriuretic peptide (BNP), creatinine and neutrophil gelatinase associated lipocalin were measured. Treatment with resveratrol, sacubitril/valsartan, valsartan and sacubitril/valsartan + resveratrol significantly prevented left ventricular (LV) dilatation and improved LV ejection fraction in MI-induced rats. All treatments also significantly reduced myocardial tissue oxidative stress, inflammation and fibrosis, as well as BNP. Treatment with the combination of sacubitril/valsartan and resveratrol did not show additive effects. In conclusion, resveratrol, sacubitril/valsartan, and valsartan significantly prevented cardiac remodeling and dysfunction in MI-induced rats. The reduction in cardiac remodeling and dysfunction in MI-induced rats was mediated by a reduction in cardiac oxidative stress, inflammation and fibrosis.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Michele Ciccarelli ◽  
Giuseppe Rengo ◽  
Kurt Chuprun ◽  
Gaetano Santulli ◽  
Bruno Trimarco ◽  
...  

The beta adrenergic receptor (βAR) kinase, GRK2, is upregulated and participates to the evolution of heart failure (HF) through downregulation and desensitization of βARs. Recent studies showed that this molecule affects insulin signaling and reduce glucose uptake in hepatocytes and adipocytes. We hypothesized that in HF, GRK2 reduces cardiac performance also through inhibition of cardiac glucose metabolism. In 12 week old Sprague/Dawley rats, we measured cardiac glucose uptake by PET 3 days, 3 and 6 weeks after myocardial infarction (MI). Function and cardiac dimensions were measured by echocardiography. We observed that glucose uptake was reduced in animal post-MI at 3 and 6 weeks respect to healthy animals (3 rd week: 1.3±0.22 vs 2.1±0.3; 6 th week: 1±0.1 vs 2.4±0.2, ml/min/g, p<0.05). No difference was observed in glucose uptake acutely after surgery. Echo showed cardiac dilation and reduced function at 6 weeks (LVD: 9.2± 0.3 vs 7.2± 0.4 mm; EF: 42%±1.1 vs 66%±2.2, p<0.05, Sham vs MI). To inhibit GRK2 in the heart during post-ischemic HF, we delivered the GRK2 inhibitor βARKct by adeno-associated type 6 virus (AAV6) to the left ventricle before induction of the MI. As a control we treated rats with AAV6 encoding for the green fluorescent protein (GFP). Cardiac dilation and function were preserved after 6 weeks post MI in AAV6 βARKct respect to AAV6GFP rats (LVD: 7.73 ±0.25 vs 9.9 ±0.8 mm; EF: 55%±2.25 vs 44%±2, p<0.05). Glucose uptake was better preserved in AAV6βARKct rats after 3 and 6 weeks post MI respect to AAV6GFP group (3rd week: 2.3±0.3 vs 1.2±0.2; 6th week: 1.8±0.2 vs 1.1±0.05, ml/min/g, p<0.05). Since Akt mediates most of the anabolic effects of insulin in cells, we evaluated the effects of GRK2 overexpression by adenovirus (ADGRK2) in neonatal cardiomyocytes (NRVMs) on Akt phosphorylation later on insulin stimulation (ins, 10 – 6 M). As control we induced overexpression of GFP by adenovirus (ADGFP). We observed reduced activation of Akt in presence of GRK2 overexpression as compared to the ADGFP treated cells (1.2±0.2- vs. 3.5±0.4- fold activation over basal, p<0.05). Our data show that post MI, impaired glucose extraction precedes development of HF, and that early GRK2 inhibition prevents impaired myocardial glucose uptake and HF development.


1999 ◽  
Vol 276 (3) ◽  
pp. E558-E564 ◽  
Author(s):  
Regine Minet-Quinard ◽  
Christophe Moinard ◽  
Françoise Villie ◽  
Stephane Walrand ◽  
Marie-Paule Vasson ◽  
...  

Aged rats are more sensitive to injury, possibly through an impairment of nitrogen and glutamine (Gln) metabolisms mediated by glucocorticoids. We studied the metabolic kinetic response of adult and old rats during glucocorticoid treatment. The male Sprague-Dawley rats were 24 or 3 mo old. Both adult and old rats were divided into 7 groups. Groups labeled G3, G5, and G7 received, by intraperitoneal injection, 1.50 mg/kg of dexamethasone (Dex) for 3, 5, and 7 days, respectively. Groups labeled G3PF, G5PF, and G7PF were pair fed to the G3, G5, or G7 groups and were injected with an isovolumic solution of NaCl. One control group comprised healthy rats fed ad libitum. The response to aggression induced specifically by Dex (i.e., allowing for variations in pair-fed controls) appeared later in the aged rats (decrease in nitrogen balance from day 1 in adults but only from day 4 in old rats). The adult rats rapidly adapted to Dex treatment, whereas the catabolic state worsened until the end of treatment in the old rats. Gln homeostasis was not maintained in the aged rats; despite an early increase in muscular Gln synthetase activity, the Gln pool was depleted. These results suggest a kinetic impairment of both nitrogen and muscle Gln metabolisms in response to Dex with aging.


Author(s):  
Alexander J. Moszczynski ◽  
Madeline Harvey ◽  
Niveen Fulcher ◽  
Cleusa de Oliveira ◽  
Patrick McCunn ◽  
...  

Abstract Although it has been suggested that the co-expression of multiple pathological proteins associated with neurodegeneration may act synergistically to induce more widespread neuropathology, experimental evidence of this is sparse. We have previously shown that the expression of Thr175Asp-tau (tauT175D) using somatic gene transfer with a stereotaxically-injected recombinant adeno-associated virus (rAAV9) vector induces tau pathology in rat hippocampus. In this study, we have examined whether the co-expression of human tauT175D with mutant human TDP-43 (TDP-43M337V) will act synergistically. Transgenic female Sprague-Dawley rats that inducibly express mutant human TDP-43M337V using the choline acetyltransferase (ChAT) tetracycline response element (TRE) driver with activity modulating tetracycline-controlled transactivator (tTA) were utilized in these studies. Adult rats were injected with GFP-tagged tau protein constructs in a rAAV9 vector through bilateral stereotaxic injection into the hippocampus. Injected tau constructs were: wild-type GFP-tagged 2N4R human tau (tauWT; n = 8), GFP-tagged tauT175D 2N4R human tau (tauT175D, pseudophosphorylated, toxic variant, n = 8), and GFP (control, n = 8). Six months post-injection, mutant TDP-43M337V expression was induced for 30 days. Behaviour testing identified motor deficits within 3 weeks after TDP-43 expression irrespective of tau expression, though social behaviour and sensorimotor gating remained unchanged. Increased tau pathology was observed in the hippocampus of both tauWT and tauT175D expressing rats and tauT175D pathology was increased in the presence of cholinergic neuronal expression of human TDP-43M337V. These data indicate that co-expression of pathological TDP-43 and tau protein exacerbate the pathology associated with either individual protein.


1998 ◽  
Vol 274 (4) ◽  
pp. R1158-R1161
Author(s):  
Evvi-Lynn M. Rollins ◽  
James E. Fewell

In newborns and adults of a number of species including humans, exposure to acute hypoxemia produces a “regulated” decease in core temperature, the mechanism of which is unknown. Considering that various cortical areas participate in autonomic regulation including thermoregulation, the present experiments were carried out to test the hypothesis that the cerebral cortex plays a role in modulating the regulated decrease in core temperature during acute hypoxemia. This hypothesis was tested by determining the core temperature response to acute hypoxemia in chronically instrumented adult Sprague-Dawley rats before and after cortical spreading depression (i.e., functional decortication) was produced by the local application of potassium chloride to the dura overlying the cerebral hemispheres. There was no effect of cortical spreading depression on baseline core temperature. Core temperature decreased during acute hypoxemia in a similar fashion when the cerebral cortex was intact as well as during functional decortication. Thus our data do not support the hypothesis that the cerebral cortex modulates the regulated decrease in core temperature that occurs in adult rats during acute hypoxemia.


2007 ◽  
Vol 292 (5) ◽  
pp. F1490-F1500 ◽  
Author(s):  
Markus Schafflhuber ◽  
Nicola Volpi ◽  
Anke Dahlmann ◽  
Karl F. Hilgers ◽  
Francesca Maccari ◽  
...  

The idea that an osmotically inactive Na+ storage pool exists that can be varied to accommodate states of Na+ retention and/or Na+ loss is controversial. We speculated that considerable amounts of osmotically inactive Na+ are lost with growth and that additional dietary salt excess or salt deficit alters the polyanionic character of extracellular glycosaminoglycans in osmotically inactive Na+ reservoirs. Six-week-old Sprague-Dawley rats were fed low-salt (0.1%; LS) or high-salt (8%; HS) diets for 1 or 4 wk. At their death, we separated the tissues and determined their Na+, K+, and water content. Three weeks of growth reduced the total body Na+ content relative to dry weight (rTBNa+) by 23%. This “growth-programmed” Na+ loss originated from the bone and the completely skinned and bone-removed carcasses. The Na+ loss was osmotically inactive (45–50%) or osmotically active (50–55%). In rats aged 10 wk, compared with HS, 4 wk of LS reduced rTBNa+ by 9%. This dietary-induced Na+ loss was osmotically inactive (≈50%) and originated largely from the skin, while ≈50% was osmotically active. LS for 1 wk did not reduce skin Na+ content. The mobilization of osmotically inactive skin Na+ with long-term salt deprivation was associated with decreased negatively charged skin glycosaminoglycan content and thereby a decreased water-free Na+ binding capacity in the extracellular matrix. Our data not only serve to explain discrepant results in salt balance studies but also show that glycosaminoglycans may provide an actively regulated interstitial cation exchange mechanism that participates in volume and blood pressure homeostasis.


1976 ◽  
Vol 81 (2) ◽  
pp. 537-547 ◽  
Author(s):  
E. Mäusle ◽  
G. Fickinger

ABSTRACT The outer zona fasciculata of 28 Sprague-Dawley rats, 8 weeks old, was studied by means of ultramorphometry. Four males and 4 females each received 1250 μg of testosterone proprionate (TP) or 300 μg oestradiol benzoate (OeB) on the second day of life. Four males and 4 females in oestrus or dioestrus served as controls. The controls showed both sex and cyclic differences: in comparison to the males, females displayed a finely dispersed lipoid pattern; enlargement of the nucleus and an increase in the amount of smooth endoplasmic reticulum (SER) indicated an increased stimulation of the cortex during oestrus. Neonatal administration of TP in females causes a distinct enlargement of cells with an increase in the volumes of nucleus, mitochondria, liposomes, SER and liposomes. The mitochondria and liposomes show a small-dispersed pattern of distribution. All these function-specific morphometric parameters point to an increased activity of the individual cell. The changes are less pronounced after OeB than after TP. In the male, neonatal administration of sex steroids results in an alteration of the sizes of the mitochondria and liposomes. The liposomes are distributed finely dispersed. At the same time there is an increase in the lipoid content. According to these parameters, fasciculata cells fulfil the morphological conditions that are a prerequisite for an elevated functional reaction. This change is more marked following OeB than TP. Sex dimorphism is preserved following neonatal application of sex steroids since the alterations are much more pronounced in females than in males.


Sign in / Sign up

Export Citation Format

Share Document