Acute superoxide scavenging reduces sympathetic vasoconstrictor responsiveness in short-term exercise-trained rats

2013 ◽  
Vol 114 (11) ◽  
pp. 1511-1518 ◽  
Author(s):  
Nicholas G. Jendzjowsky ◽  
Darren S. DeLorey

We hypothesized that acute superoxide (O2−) scavenging would attenuate sympathetic vasoconstrictor responsiveness by augmenting nitric oxide (NO)-mediated inhibition of sympathetic vasoconstriction in exercise-trained rats. Sprague-Dawley rats were randomly assigned to sedentary time control (S; n = 7) or mild- (M: 20 m/min, 5° grade; n = 7) or heavy-intensity (H: 40 m/min, 5° grade; n = 7) exercise training (ET) groups and trained 5 days/wk for 4 wk with matched training volume. Following ET, rats were anesthetized and instrumented for lumbar sympathetic chain stimulation and measurement of femoral vascular conductance. In resting skeletal muscle, the percentage change of femoral vascular conductance in response to continuous (2 Hz) and patterned (20 and 40 Hz) sympathetic stimulation was determined during control conditions, O2− scavenging (TIRON, 1 g·kg−1·h−1 iv) and combined O2− scavenging + nitric oxide synthase blockade ( Nω-nitro-l-arginine methyl ester, 5 mg/kg iv). ET augmented the vasoconstrictor response to sympathetic stimulation in a training intensity-dependent manner ( P < 0.05) (S: 2 Hz: −26 ± 7.1%; 20 Hz: −26.9 ± 7.3%; 40 Hz: −27.7 ± 7.0%; M: 2 Hz: −37.4 ± 8.3%; 20 Hz: −35.9 ± 7.4%; 40 Hz: −38.2 ± 9.4%; H: 2 Hz: −46.9 ± 7.8%; 20 Hz: −48.5 ± 7.2%; 40 Hz: −51.2 ± 7.3%). O2− scavenging did not alter ( P > 0.05) the vasoconstrictor response in S rats (S: 2 Hz: −23.9 ± 7.6%; 20 Hz: −26.1 ± 9.1%; 40 Hz: −27.5 ± 7.2%), whereas the response in ET rats was diminished (M: 2 Hz: −26.3 ± 5.1%; 20 Hz: −28.7 ± 5.3%; 40 Hz: −28.5 ± 5.6%; H: 2 Hz: −35.5 ± 10.3%; 20 Hz: −38.6 ± 6.8%; 40 Hz: −43.9 ± 5.9%, P < 0.05). TIRON + Nω-nitro-l-arginine methyl ester increased vasoconstrictor responsiveness ( P < 0.05) in ET rats (M: 2 Hz: −47.7 ± 9.8%; 20 Hz: −41.2 ± 7.2%; 40 Hz: −50.5 ± 7.9%; H: 2 Hz: −55.8 ± 7.6%; 20 Hz: −55.7 ± 7.8%; 40 Hz: −58.7 ± 6.2%), whereas, in S rats, the response was unchanged (2 Hz: −29.4 ± 8.7%; 20 Hz: −30.0 ± 7.4%; 40 Hz: −35.2 ± 10.3%; P > 0.05). These data indicate that the augmented sympathetic vasoconstrictor responsiveness in ET rats was related to increased oxidative stress and altered nitric oxide-mediated inhibition of vasoconstriction.

2012 ◽  
Vol 303 (3) ◽  
pp. R332-R339 ◽  
Author(s):  
Nicholas G. Jendzjowsky ◽  
Darren S. DeLorey

We tested the hypotheses that 4 wk of exercise training would diminish the magnitude of vasoconstriction in response to sympathetic nerve stimulation and augment endothelium-dependent vasodilation (EDD) in resting skeletal muscle in a training intensity-dependent manner. Sprague-Dawley rats were randomly assigned to sedentary time-control (S), mild- (M; 20 m/min, 5% grade), or heavy-intensity (H; 40 m/min, 5% grade) treadmill exercise groups. Animals trained 5 days/wk for 4 wk with training volume matched between groups. Rats were anesthetized and instrumented for study 24 h after the last training session. Arterial pressure and femoral artery blood flow were measured, and femoral vascular conductance (FVC) was calculated. Lumbar sympathetic chain stimulation was delivered continuously at 2 Hz and in patterns at 20 and 40 Hz. EDD was assessed by the vascular response to intra-arterial bolus injections of ACh. The response (% change FVC) to sympathetic stimulation increased ( P < 0.05) in a training intensity-dependent manner at 2 Hz (S: −20.2 ± 9.8%, M: −34.0 ± 6.7%, and H: −44.9 ± 2.0%), 20 Hz (S: −22.0 ± 10.6%, M: −31.2 ± 8.4%, and H: −42.8 ± 5.9%), and 40 Hz (S: H −24.5 ± 8.5%, M: −35.1 ± 8.9%, H: −44.9 ± 6.5%). The magnitude of EDD also increased in a training intensity-dependent manner ( P < 0.05). These data demonstrate that short-term exercise training augments the magnitude of vasoconstriction in response to sympathetic stimulation and EDD in resting skeletal muscle in a training intensity-dependent manner.


1998 ◽  
Vol 274 (5) ◽  
pp. H1776-H1784 ◽  
Author(s):  
Ann L. Baldwin ◽  
Gavin Thurston ◽  
Hamda Al Naemi

Inhibition of nitric oxide (NO) synthesis using N G-nitro-l-arginine methyl ester (l-NAME) or N G-monomethyl-l-arginine (l-NMMA) increases venular permeability in the rat mesentery (I. Kurose, R. Wolf, M. B. Grisham, T. Y. Aw, R. D. Specian, and D. N. Granger. Circ. Res. 76: 30–39, 1995), but the cellular mechanisms of this response are not known. This study was performed to determine whether such venular leaks are associated with changes in the endothelial actin cytoskeleton. In anesthetized Sprague-Dawley rats, the microvasculature of a mesenteric window was perfused with buffered saline, with or without 10−5M l-NAME,l-NMMA, or the inactive enantiomer N G-nitro-d-arginine methyl ester for 3 or 30 min. FITC-albumin was added to the perfusate for the last 3 min. The vasculature was perfusion fixed, stained for filamentous actin and for mast cells, and viewed microscopically. In control preparations, venules showed few FITC-albumin leaks and the endothelial actin cytoskeleton consisted of a peripheral rim along the cell-cell junctions. Preparations treated withl-NAME orl-NMMA showed significantly more leakage, the actin rims in leaky venules were discontinuous, and short, randomly oriented fibers appeared within the cells. In nonleaky venules, the peripheral actin rims sometimes contained small, equally spaced discontinuities not seen in control preparations. Although a mast cell stabilizer was used, 27–70% of the mast cells were degranulated in the presence ofl-NMMA. Thus inhibition of NO synthesis alters the endothelial cytoskeleton and increases albumin leakage from mesenteric venules, either directly or indirectly via the involvement of mast cells.


2010 ◽  
Vol 298 (4) ◽  
pp. R1007-R1016 ◽  
Author(s):  
Kuichang Yuan ◽  
Jiahua Yu ◽  
Amin Shah ◽  
Shan Gao ◽  
Sun Young Kim ◽  
...  

Leptin is a circulating adipocyte-derived hormone that influences blood pressure (BP) and metabolism. This study was designed to define the possible role of leptin in regulation of the atrial natriuretic peptide (ANP) system using acute and chronic experiments. Intravenous infusion of rat leptin (250 μg/kg injection plus 2 μg·kg−1·min−1 for 20 min) into Sprague-Dawley rats increased BP by 25 mmHg and decreased plasma level of ANP from 80.3 ± 3.45 to 51.8 ± 3.3 pg/ml. Reserpinization attenuated the rise in BP, but not the reduction of plasma ANP during leptin infusion. Nω-nitro-l-arginine methyl ester prevented the effects of leptin on the reduction of ANP level. In hyperleptinemic rats that received adenovirus containing rat leptin cDNA (AdCMV-leptin), BP increased during first 2 days and then recovered to control value. Plasma concentration of ANP and expression of ANP mRNA, but not of atrial ANP, in hyperleptinemic rats were lower than in the control groups on the first and second week after administration of AdCMV-leptin. These effects were not observed by the pretreatment with Nω-nitro-l-arginine methyl ester. No differences in renal function and ANP receptor density in the kidney were found between hyperleptinemic and control rats. Basal ANP secretion and isoproterenol-induced suppression of ANP secretion from isolated, perfused atria of hyperleptinemic rats were not different from those of other control groups. These data suggest that leptin inhibits ANP secretion indirectly through nitric oxide without changing basal or isoproterenol-induced ANP secretion.


1998 ◽  
Vol 26 (4) ◽  
pp. 541-548
Author(s):  
Roger J. Price ◽  
Anthony B. Renwick ◽  
Paula T. Barton ◽  
J. Brian Houston ◽  
Brian G. Lake

This study investigated the effects of some experimental variables on the rate of xenobiotic metabolism in precision-cut rat liver slices. Liver slices of 123 ± 8μm (mean ± SEM of six slices), 165 ± 3μm, 238 ± 6μm and 515 ± 14μm thickness were prepared from male Sprague-Dawley rats, and incubated in RPMI 1640 medium in an atmosphere of 95% O2/5% CO2 by using a dynamic organ culture system. Liver slices of all thicknesses metabolised 10μM 7-ethoxycoumarin to total (free and conjugated) 7-hydroxycoumarin in a time-dependent manner. The rate of 7-ethoxycoumarin metabolism was greatest in 165μm thick slices and slowest in 515μm thick slices, being 2.74 ± 0.19pmol/minute/mg slice protein and 0.69 ± 0.07pmol/minute/mg slice protein, respectively. No marked effects on the rate of 7-ethoxycoumarin metabolism in liver slices were observed either by changing the medium to Earle's balanced salt solution (EBSS) or by changing the gas phase to 95% air/5% CO2. Moreover, the perfusion of rat livers with EBSS at 2–4°C, prior to preparation of tissue cores, did not enhance 7-ethoxycoumarin metabolism in rat liver slices. In this study, the optimal slice thickness was 175μm, with higher rates of 7-ethoxycoumarin metabolism being observed than with 250μm thick slices, which are often used for studies of xenobiotic metabolism. Variable results were obtained with slices of around 100–120μm thickness, which may be attributable to the ratio between intact hepatocytes and cells damaged by the slicing procedure in these very thin slices.


2001 ◽  
Vol 86 (5) ◽  
pp. 549-555 ◽  
Author(s):  
Hyun S. Park ◽  
Ji H. Ryu ◽  
Yeong L. Ha ◽  
Jung H. Y. Park

One of the objectives of the present study was to investigate whether 1 % conjugated linoleic acid (CLA) in the diet reduced tumour incidence in the colon of 1,2-dimethylhydrazine (DMH)-treated rats. Colon cancer was induced by injecting 6-week-old, male, Sprague–Dawley rats with 15 mg/kg DMH twice per week for 6 weeks. They were fed either 1 % CLA or a control diet ad libitum for 30 weeks. Dietary CLA significantly decreased colon tumour incidence (P<0·05). Our second objective was to investigate whether apoptosis in the colon mucosa of DMH-treated rats was affected by the amount of dietary CLA and whether the changes in apoptosis were related to those in fatty acid-responsive biomarkers. For this purpose, rats were killed after being fed a diet containing 0 %, 0·5 %, 1 % or 1·5 % CLA for 14 weeks. CLA was undetected in the mucosa of rats fed the 0 % CLA diet and increased to 5·9 mg/g phospholipid in rats fed the 0·5 % diet. The apoptotic index estimated by the terminal deoxynucleotidyl transferase-mediated dUTP nick and labelling technique was increased by 251 % and the 1,2-diacylglycerol content was decreased by 57 % in rats fed 0·5 % CLA. No further changes in these variables were observed when CLA in the diet was raised to 1·0 % or 1·5 %. However, dietary CLA decreased mucosal levels of prostaglandin E2, thromboxane B2 and arachidonic acid in a dose-dependent manner. The present data indicate that dietary CLA can inhibit DMH-induced colon carcinogenesis by mechanisms probably involving increased apoptosis.


1997 ◽  
Vol 87 (2) ◽  
pp. 354-360 ◽  
Author(s):  
Yumiko Ishizawa ◽  
Shuichiro Ohta ◽  
Hiroyuki Shimonaka ◽  
Shuji Dohi

Background Although hyper- and hypoglycemia induce neurophysiologic changes, there have been no reports on the effects of blood glucose changes on anesthetic requirements. This study examined the effects of hyper- and hypoglycemia on the minimum alveolar concentration (MAC) of halothane in rats. In addition, based on a previous finding that the level of brain acetylcholine was reduced during mild hypoglycemia, the authors examined the influence of physostigmine on MAC during hypoglycemia. Methods In Sprague-Dawley rats, anesthesia was induced and maintained with halothane in oxygen and air. The MAC was determined by observing the response to tail clamping and tested during mild hypoglycemia (blood glucose level, 60 mg/dl) and hyperglycemia (blood glucose level, 300 and 500 mg/dl) induced by insulin and glucose infusion, respectively (experiment 1). The effects of 0.3 and 1.0 mg/kg physostigmine given intraperitoneally on MAC were examined in rats with mild and severe hypoglycemia (blood glucose level, 60 and 30 mg/dl; experiment 2). Results In experiment 1, mild hypoglycemia significantly reduced the MAC of halothane (0.76 +/- 0.03%) compared with the control value (0.92 +/- 0.04%), but hyperglycemia did not change MAC. In experiment 2, mild and severe hypoglycemia reduced MAC of halothane in a degree-dependent manner. Physostigmine (1 mg/kg) had no effect on MAC regardless of blood glucose level, but 0.3 mg/kg reduced MAC. Conclusions Hypoglycemia reduced anesthetic requirements in a degree-dependent manner, whereas hyperglycemia had no effects. Although the mechanism of hypoglycemic MAC reduction needs further investigations, physostigmine studies suggest that this may not be related to inhibition of cholinergic transmission.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Casandra M Monzon ◽  
Jeffrey Garvin

About 50% of the Na reabsorbed in thick ascending limbs (TALs) traverses the paracellular pathway. The ionic selectivity of this route is regulated by claudins in the tight junctions. TALs express claudin-19 which has been reported to regulate TAL Na permeability. We showed that nitric oxide (NO) decreases Na/Cl permeability ratio (PNa/PCl) in TALs by increasing the absolute permeabilities of both ions though PCl increased more. However, whether NO affects paracellular permeability via claudin-19 is unknown. We hypothesize that NO regulates the paracellular permselectivity in TALs through this claudin. To test this we perfused TALs from Sprague Dawley rats and measured dilution potentials (a measure of permselectivity) with and without exogenously-added or endogenously-produced NO in the presence or absence of an antibody against an extracellular domain of claudin-19 or Tamm-Horsfall protein (control). Dilution potentials were generated by reducing bath NaCl from 141 to 32 mM. For the NO donor spermine NONOate (SPM): during the control period, the dilution potential was -9.3 ± 1.8 mV. After SPM (200 μM), it was -6.7 ± 1.6 mV (n = 6; p < 0.003). In the presence of the claudin-19 antibody, SPM had no significant effect on dilution potentials (claudin-19 antibody alone: -12.7 ± 2.1 mV vs claudin-19 antibody + SPM: -12.9 ± 2.4 mV; n = 6). The claudin-19 antibody alone had no effect on dilution potentials. In the presence of the Tamm-Horsfall protein, the effect of SPM was still present (Tamm-Horsfall protein antibody alone: -9.7 ± 1.0 mV; Tamm-Horsfall protein antibody + SPM: -6.3 ± 1.1 mV, p<0.006, n = 6). For experiments with endogenously-produced NO, L-arginine the substrate for NO synthase was added. During the control period, the dilution potential was -11.0 ± 1.1 mV. After L-arginine (500 μM) treatment, they were -9.0 ± 1.2 mV (n = 9; p < 0.05). In the presence of the claudin-19 antibody, L-arginine had no significant effect on dilution potentials (claudin-19 antibody alone: -10.1 ± 0.9 mV vs claudin-19 antibody + L-arginine: -10.1 ± 1.0 mV; n = 9). In the presence of the Tamm-Horsfall protein, the effect of L-arginine was still present. We conclude that the actions of NO on the paracellular permselectivity in thick ascending limbs are at least in part mediated by claudin-19.


2021 ◽  
Vol 17 ◽  
Author(s):  
Gideon Ayeni ◽  
Mthokozisi Blessing Cedric Simelane ◽  
Shahidul Islam ◽  
Ofentse Jacob Pooe

Background: Medicinal plants together with their isolated bioactive compounds are known for their antioxidant properties which constitute therapeutic agents that are routinely employed in the treatment of liver diseases. Aims of the Study: The current study sought to explore the protective role of Warburgia salutaris and its isolated compound, iso-mukaadial acetate against carbon tetrachloride (CCl4)-induced hepatic injury. Methods: Thirty-five male Sprague Dawley rats were divided into seven groups of five animals each and injected with CCl4 to induce hepatic injury. Results: Treatment with the crude extract of W. salutaris and of iso-mukaadial acetate significantly reduced the levels of alkaline phosphatase, alanine and aspartate aminotransaminases, total bilirubin and malondialdehyde in a dose dependent manner, when compared to untreated groups. Liver histology revealed a reduction in hepatic necrosis and inflammation. Conclusion: The current investigation has demonstrated that W. salutaris extract and iso-mukaadial acetate could mitigate the acute liver injury inflicted by a hepatotoxic inducer in rats.


2003 ◽  
Vol 94 (5) ◽  
pp. 1813-1820 ◽  
Author(s):  
Shin Terada ◽  
Isao Muraoka ◽  
Izumi Tabata

The purpose of the present investigation was to establish a method for estimating intracellular Ca2+ concentrations ([Ca2+]i) in isolated rat epitrochlearis muscles. Epitrochlearis muscles excised from 4-wk-old male Sprague-Dawley rats were loaded with a fluorescent Ca2+indicator, fura 2-AM, for 60–90 min at 35°C in oxygenated Krebs-Henseleit buffer. After fura 2 loading and subsequent 20-min incubation, the intensities of 500-nm fluorescence, induced by 340- and 380-nm excitation lights (Ftotal340 and Ftotal380), were measured. The fluorescences specific to fura-2 (Ffura 2340 and Ffura 2380) were calculated by subtracting the non-fura 2-specific component from Ftotal340 and Ftotal380, respectively. The ratio of Ffura 2340 to Ffura 2380 was calculated as R, and the change in the ratio from the baseline value (ΔR) was used as an index of the change in [Ca2+]i. In resting muscle, ΔR was stable for 60 min. Incubation for 20 min with caffeine (3–10 mM) significantly increased ΔR in a concentration-dependent manner. Incubation with hypoxic Krebs-Henseleit buffer for 10–60 min significantly elevated ΔR, depending on the duration of the incubation. Incubation with 50 μM N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide for 20 min significantly elevated ΔR ( P < 0.05). No significant increases in ΔR were observed during incubation for 20 min with 2 mM 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside or with 2 mU/ml insulin. These results demonstrated that, by using the fura 2-AM fluorescence method, the changes in [Ca2+]i can be monitored in the rat epitrochlearis muscle and suggest that the method can be utilized to observe quantitative information regarding [Ca2+]i that may be involved in contraction- and hypoxia-stimulated glucose transport activity in skeletal muscle.


2009 ◽  
Vol 297 (6) ◽  
pp. F1606-F1613 ◽  
Author(s):  
Libor Kopkan ◽  
Md Abdul H. Khan ◽  
Agnieszka Lis ◽  
Mouhamed S. Awayda ◽  
Dewan S. A. Majid

Although hypercholesterolemia is implicated in the pathophysiology of many renal disorders as well as hypertension, its direct actions in the kidney are not yet clearly understood. In the present study, we evaluated renal responses to administration of cholesterol (8 μg·min−1·100 g body wt−1; bound by polyethylene glycol) into the renal artery of anesthetized male Sprague-Dawley rats. Total renal blood flow (RBF) was measured by a Transonic flow probe, and glomerular filtration rate (GFR) was determined by Inulin clearance. In control rats ( n = 8), cholesterol induced reductions of 10 ± 2% in RBF [baseline (b) 7.6 ± 0.3 μg·min−1·100 g−1], 17 ± 3% in urine flow (b, 10.6 ± 0.9 μg·min−1·100 g−1), 29 ± 3% in sodium excretion (b, 0.96 ± 0.05 μmol·min−1·100 g−1) and 24 ± 2% in nitrite/nitrate excretion (b, 0.22 ± 0.01 nmol·min−1·100 g−1) without an appreciable change in GFR (b, 0.87 ± 0.03 ml·min−1·100 g−1). These renal vasoconstrictor and anti-natriuretic responses to cholesterol were absent in rats pretreated with nitric oxide (NO) synthase inhibitor, nitro-l-arginine methylester (0.5 μg·min−1·100 g−1; n = 6). In rats pretreated with superoxide (O2−) scavenger tempol (50 μg·min−1·100 g−1; n = 6), the cholesterol-induced renal responses remained mostly unchanged, although there was a slight attenuation in anti-natriuretic response. This anti-natriuretic response to cholesterol was abolished in furosemide-pretreated rats (0.3 μg·min−1·100 g−1; n = 6) but remained unchanged in amiloride-pretreated rats (0.2 μg·min−1·100 g−1; n = 5), indicating that Na+/K+/2Cl− cotransport is the dominant mediator of this effect. These data demonstrate that cholesterol-induced acute renal vasoconstrictor and antinatriuretic responses are mediated by a decrease in NO production. These data also indicate that tubular effect of cholesterol on sodium reabsorption is mediated by the furosemide sensitive Na+/K+/2Cl− cotransporter.


Sign in / Sign up

Export Citation Format

Share Document