scholarly journals Effects of ischemic preconditioning on maximal constant-load cycling performance

2015 ◽  
Vol 119 (9) ◽  
pp. 961-967 ◽  
Author(s):  
Rogério Santos de Oliveira Cruz ◽  
Rafael Alves de Aguiar ◽  
Tiago Turnes ◽  
Kayo Leonardo Pereira ◽  
Fabrizio Caputo

This study investigated the effects of ischemic preconditioning (IPC) on the ratings of perceived exertion (RPE), surface electromyography, and pulmonary oxygen uptake (V̇o2) onset kinetics during cycling until exhaustion at the peak power output attained during an incremental test. A group of 12 recreationally trained cyclists volunteered for this study. After determination of peak power output during an incremental test, they were randomly subjected on different days to a performance protocol preceded by intermittent bilateral cuff pressure inflation to 220 mmHg (IPC) or 20 mmHg (control). To increase data reliability, the performance visits were replicated, also in a random manner. There was an 8.0% improvement in performance after IPC (control: 303 s, IPC 327 s, factor SDs of ×/÷1.13, P = 0.01). This change was followed by a 2.9% increase in peak V̇o2 (control: 3.95 l/min, IPC: 4.06 l/min, factor SDs of ×/÷1.15, P = 0.04), owing to a higher amplitude of the slow component of the V̇o2 kinetics (control: 0.45 l/min, IPC: 0.63 l/min, factor SDs of ×/÷2.21, P = 0.05). There was also an attenuation in the rate of increase in RPE ( P = 0.01) and a progressive increase in the myoelectrical activity of the vastus lateralis muscle ( P = 0.04). Furthermore, the changes in peak V̇o2 ( r = 0.73, P = 0.007) and the amplitude of the slow component ( r = 0.79, P = 0.002) largely correlated with performance improvement. These findings provide a link between improved aerobic metabolism and enhanced severe-intensity cycling performance after IPC. Furthermore, the delayed exhaustion after IPC under lower RPE and higher skeletal muscle activation suggest they have a role on the ergogenic effects of IPC on endurance performance.

2017 ◽  
Vol 23 (4) ◽  
pp. 231-238 ◽  
Author(s):  
Cayque Brietzke ◽  
Ricardo Yukio Asano ◽  
Felipe De Russi de Lima ◽  
Fabiano Aparecido Pinheiro ◽  
Franco-Alvarenga ◽  
...  

Background: Ergogenic effects of caffeine (CAF) ingestion have been observed in different cycling exercise modes, and have been associated with alterations in ratings of perceived exertion (RPE). However, there has been little investigation of maximal oxygen uptake (VO2MAX) test outcomes. Aim: This study aimed to verify whether CAF may reduce RPE, thereby improving maximal incremental test (MIT) outcomes such as VO2MAX, time to exhaustion and peak power output (WPEAK). Methods: Nine healthy individuals performed three MITs (25 W/min until exhaustion) in a random, counterbalanced fashion after ingestion of CAF, placebo perceived as caffeine (PLA), and no supplementation (baseline control). VO2 was measured throughout the test, while RPE was rated according to overall and leg effort sensations. The power output corresponding to submaximal (RPE = 14 according to the 6–20 Borg scale) and maximal RPE was recorded for both overall (O-RPE14 and O-RPEMAX) and leg RPE (L-RPE14 and L-RPEMAX). Results: VO2MAX did not change significantly between MITs; however, CAF and PLA increased time to exhaustion (↑ ∼18.7% and ∼17.1%, respectively; p < .05) and WPEAK (↑ ∼13.0% and ∼11.8%, respectively; p < .05) when compared with control. When compared with control, CAF ingestion reduced submaximal and maximal overall and leg RPEs, the effect being greater in maximal (likely beneficial in O-RPEMAX and L-RPEMAX) than submaximal RPE (possibly beneficial in O-RPE14 and L-RPE14). Similar results were found when participants ingested PLA. Conclusions: Compared with control, CAF and PLA improved MIT performance outcomes such as time to exhaustion and WPEAK, without altering VO2MAX values. CAF effects were attributed to placebo.


2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S337
Author(s):  
D J. Bentley ◽  
L R. McNaughton ◽  
V E. Vleck ◽  
J Hatcher

2020 ◽  
Vol 15 (9) ◽  
pp. 1303-1308
Author(s):  
Marco J. Konings ◽  
Florentina J. Hettinga

Purpose: The behavior of an opponent has been shown to alter pacing and performance. To advance our understanding of the impact of perceptual stimuli such as an opponent on pacing and performance, this study examined the effect of a preexercise cycling protocol on exercise regulation with and without an opponent. Methods: Twelve trained cyclists performed 4 experimental, self-paced 4-km time-trial conditions on an advanced cycle ergometer in a randomized, counterbalanced order. Participants started the time trial in rested state (RS) or performed a 10-min cycling protocol at 67% peak power output (CP) before the time trial. During the time trials, participants had to ride alone (NO) or against a virtual opponent (OP). The experimental conditions were (1) RS-NO, (2) RS-OP, (3) CP-NO, and (4) CP-OP. Repeated-measures analyses of variance (P < .05) were used to examine differences in pacing and performance in terms of power output. Results: A faster pace was adopted in the first kilometer during RS-OP (318 [72] W) compared with RS-NO (291 [81] W; P = .03), leading to an improved finishing time during RS-OP compared with RS-NO (P = .046). No differences in either pacing or performance were found between CP-NO and CP-OP. Conclusions: The evoked response by the opponent to adopt a faster initial pace in the 4-km time trial disappeared when cyclists had to perform a preceding cycling protocol. The outcomes of this study highlight that perceived exertion alters the responsiveness to perceptual stimuli of cyclists during competition.


2021 ◽  
Author(s):  
Geoffrey M Minett ◽  
Valentin Fels-Camilleri ◽  
Joshua J Bon ◽  
Franco Milko Impellizzeri ◽  
David N Borg

Objectives: This study aimed to examine the effect of peer presence on the session rating of perceived exertion (RPE) responses. Design: Within-participant design. Method: Fourteen males, with mean (standard deviation) age 22.4 (3.9) years, peak oxygen uptake 48.0 (6.6) mL·kg-1·min-1 and peak power output 330 (44) W, completed an incremental cycling test and three identical experimental sessions, in groups of four or five. Experimental sessions involved 24 min of cycling, whereby the work rate alternated between 40% and 70% peak power output every 3 min. During cycling, heart rate was collected every 3 min, and session-RPE was recorded 10 min after cycling, in three communication contexts: in written form unaccompanied (intrapersonal communication); verbally by the researcher only (interpersonal communication); and in the presence of the training group. Session-RPE was analysed using ordinal regression and heart rate using a linear mixed-effects model, with models fit in a Bayesian framework. Results: Session-RPE was voted higher when collected in the group's presence compared to when written (odds ratio = 5.3, 95% credible interval = 1.6 to 17.6). On average, the posterior probability that session-RPE was higher in the group setting than when written was 0.57. Session-RPE was not different between the group and verbal, or verbal and written collection contexts. Conclusions: This study suggests contextual psychosocial inputs influence session-RPE, and highlights the importance of session-RPE users controlling the measurement environment when collecting votes.


2020 ◽  
Vol 41 (12) ◽  
pp. 846-857
Author(s):  
Hamidreza Barzegarpoor ◽  
Hamid Amoozi ◽  
Hamid Rajabi ◽  
Duane Button ◽  
Rana Fayazmilani

AbstractThis study investigated the effect of performing prolonged mental exertion during submaximal cycling exercise on exercise tolerance and fatigue. Participants performed 5 experimental sessions. Session 1: determination of cycling peak power output. Sessions 2 and 3: cycling to exhaustion at 65% peak power output with mental exertion or watching a movie. Sessions 4 and 5: cycling for 45 min at 65% peak power output with mental exertion or while watching a movie. During sessions 2–5, rate of perceived exertion and heart rate were recorded while cycling and cortisol and prolactin concentrations, psychomotor vigilance task performance, and maximal voluntary contraction were measured pre-and post-sessions. During sessions 2 and 3, time to exhaustion was reduced (p<0.01) and rate of perceived exertion was increased (p<0.01) in session 2 compared to 3. Cortisol, prolactin and heart rate increased and psychomotor vigilance task and maximal voluntary contraction decreased from pre-to post-sessions with no difference between sessions. Cortisol, prolactin and rate of perceived exertion were higher (p<0.03) in session 4 than 5. Heart rate increased and maximal voluntary contraction decreased from pre-to post-sessions with no difference between sessions. Prolonged mental exertion during cycling exercise reduces exercise tolerance, which appears to be mediated psychologically rather than physiologically.


2020 ◽  
Vol 45 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Leonardo Trevisol Possamai ◽  
Fernando de Souza Campos ◽  
Paulo Cesar do Nascimento Salvador ◽  
Rafael Alves de Aguiar ◽  
Luiz Guilherme Antonacci Guglielmo ◽  
...  

The present study aimed to compare maximal oxygen uptake of a step incremental test with time to exhaustion verification tests (TLIM) performed on the same or different day. Nineteen recreationally trained cyclists (age: 23 ± 2.7 years; maximal oxygen uptake: 48.0 ± 5.8 mL·kg−1·min−1) performed 3 maximal tests as follows: (i) same day: an incremental test with 3-min stages followed by a TLIM at 100% of peak power output of the incremental test (TLIM-SAME) interspaced by 15 min; and (ii) different day: a TLIM at 100% of peak power output of the incremental test (TLIM-DIFF). The maximal oxygen uptake was determined for the 3 tests. The maximal oxygen uptake was not different among the tests (incremental: 3.83 ± 0.41; TLIM-SAME: 3.72 ± 0.42; TLIM-DIFF: 3.75 ± 0.41 L·min−1; P = 0.951). Seven subjects presented a variability greater than ±3% in both verification tests compared with the incremental test. The same-day verification test decreased the exercise tolerance (240 ± 38 vs. 310 ± 36 s) compared with TLIM-DIFF (P < 0.05). In conclusion, the incremental protocol is capable of measuring maximal oxygen uptake because similar values were observed in comparison with verification tests. Although the need for the verification phase is questionable, the additional tests are useful to evaluate individual variability. Novelty Step incremental test is capable of measuring maximal oxygen uptake with similar values during TLIM on the same or different day. Although the necessity of the verification phase is questionable, it can allow the determination of variability in maximal oxygen uptake.


2014 ◽  
Vol 9 (4) ◽  
pp. 610-614 ◽  
Author(s):  
Robert P. Lamberts

In high-performance cycling, it is important to maintain a healthy balance between training load and recovery. Recently a new submaximal cycle test, known as the Lamberts and Lambert Submaximal Cycle Test (LSCT), has been shown to be able to accurately predict cycling performance in 15 well-trained cyclists. The aim of this study was to determine the predictive value of the LSCT in 102 trained to elite cyclists (82 men and 20 women). All cyclists performed an LSCT test followed by a peak-power-output (PPO) test, which included respiratory-gas analysis for the determination of maximal oxygen consumption (VO2max). They then performed the LSCT test followed by a 40-km time trial (TT) 72 h later. Average power output during the 3 stages of the LSCT increased from 31%, 60%, and 79% of PPO, while the ratings of perceived exertion increased from 8 to 13 to 16. Very good relationships were found between actual and LSCT-predicted PPO (r = .98, 95%CI: .97–.98, P < .0001), VO2max (r = .96, 95%CI: .97–.99, P < .0001) and 40-km-TT time (r = .98, 95%CI: .94–.97, P < .0001). No gender differences were found when predicting cycling performance from the LSCT (P = .95). The findings of this study show that the LSCT is able to accurately predict cycling performance in trained to elite male and female cyclists and potentially can be used to prescribe and fine-tune training prescription in cycling.


Sign in / Sign up

Export Citation Format

Share Document