scholarly journals Impaired exercise capacity and skeletal muscle function in a mouse model of pulmonary inflammation

2013 ◽  
Vol 114 (9) ◽  
pp. 1340-1350 ◽  
Author(s):  
Kechun Tang ◽  
George Murano ◽  
Harrieth Wagner ◽  
Leonardo Nogueira ◽  
Peter D. Wagner ◽  
...  

Pulmonary TNFα has been linked to reduced exercise capacity in a subset of patients with moderate to severe chronic obstructive pulmonary disease (COPD). We hypothesized that prolonged, high expression of pulmonary TNFα impairs cardiac and skeletal muscle function, and both contribute to exercise limitation. Using a surfactant protein C promoter-TNFα construct, TNFα was overexpressed throughout life in mouse lungs (SP-C/TNFα+). TNFα levels in wild-type (WT) female serum and lung were two- and threefold higher than in WT male mice. In SP-C/TNFα+ mice, TNFα increased similarly in both sexes. Treadmill exercise was impaired only in male SP-C/TNFα+ mice. While increases in lung volume and airspace size induced by TNFα were comparable in both sexes, pulmonary hypertension along with lower body and muscle mass were evident only in male mice. Left ventricular (LV) function (cardiac output, stroke volume, LV maximal pressure, and LV maximal pressure dP/d t) was not altered by TNFα overexpression. Fatigue measured in isolated soleus and EDL was more rapid only in soleus of male SP-C/TNFα+ mice and accompanied by a loss of oxidative IIa fibers, citrate synthase activity, and PGC-1α mRNA and increase in atrogin-1 and MuRF1 expression also only in male mice. In situ gastrocnemius fatigue resistance, reflecting both oxygen availability and contractility, was decreased similarly in female and male SP-C/TNFα+ mice. These data indicate that male, but not female, mice overexpressing pulmonary TNFα are susceptible to exercise limitation, possibly due to muscle wasting and loss of the oxidative muscle phenotype, with protection in females possibly due to estrogen.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Hikari Takeshita ◽  
Koichi Yamamoto ◽  
Satoko Nozato ◽  
Tadakatsu Inagaki ◽  
Hirotsugu Tsuchimochi ◽  
...  

2007 ◽  
Vol 39 (Supplement) ◽  
pp. S360
Author(s):  
Takashi Yokota ◽  
Shintaro Kinugawa ◽  
Syoji Matsushima ◽  
Naoki Inoue ◽  
Yukihiro Ohta ◽  
...  

2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Kechun Tang ◽  
George Murano ◽  
Peter D. Wagner ◽  
Ellen C. Breen

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e13002-e13002
Author(s):  
L. Jones ◽  
A. Friedman ◽  
M. West ◽  
S. Mabe ◽  
J. Fraser ◽  
...  

e13002 Background: The neuropsychological impact of malignant glioma is well documented; the physiological and functional effects are not known. We conducted a pilot study to quantitatively assess cardiorespiratiory fitness, skeletal muscle function, and body composition of patients with primary malignant glioma. Methods: Using a cross-sectional design, patients with clinically stable postsurgical (10 ± 7 days post surgery) high-grade glioma (HGG; n=25) and low-grade glioma (LGG) were studied. Participants performed a cardiopulmonary exercise test (CPET) with expired gas analysis to assess peak exercise capacity (VO2peak) and other parameters of cardiovascular function. Other physiological outcomes included skeletal muscle cross-sectional area (CSA; magnetic resonance imaging), isokinetic muscle strength (isokinetic dynamometer), and body composition (air displacement plethysmography). QOL was assessed by the Functional Assessment of Cancer Therapy-Brain scale (FACT-BR). Results: CPET was a feasible and safe procedure for malignant glioma patients with no serious adverse events. Peak VO2 indexed to total body weight and lean body mass for both groups was 13.0 mL.min-1 and 19 mL.min-1; the equivalent to 59% and 38% below age and sex-predicted normative values, respectively. Skeletal muscle isokinetic strength was significantly lower in HGG relative to LGG patients (83 vs. 125 Nm, p=.025) and predicted peak VO2 (r = 0.44, p<0.05). In patients with HGG, only self-reported exercise behavior was correlated with QOL (r = 0.42; p=.046) while sex (male) (r = 0.44; p=.037), lean mass (r = -0.41; p=.049), and VO2peak (r = -0.40; p=.052) were associated with fatigue. Conclusions: CPET is a safe and feasible tool to evaluate physical functioning in select patients with malignant glioma. Postsurgical glioma patients have markedly reduced exercise capacity, isokinetic strength and CSA. Muscle strength is an important contributor to poor VO2peak in this population. Prospective studies are now required to determine whether such abnormalities influence prognosis as well as test the effect of appropriately selected interventions to prevent and/or mitigate dysfunction. No significant financial relationships to disclose.


2020 ◽  
Vol 21 (20) ◽  
pp. 7466
Author(s):  
Frank J. Raucci ◽  
Anand Prakash Singh ◽  
Jonathan Soslow ◽  
Larry W. Markham ◽  
Lin Zhong ◽  
...  

Brain-derived neurotrophic factor (BDNF) is a neuronal growth and survival factor that harbors cardioprotective qualities that may attenuate dilated cardiomyopathy. In ~30% of the population, BDNF has a common, nonsynonymous single nucleotide polymorphism rs6265 (Val66Met), which might be correlated with increased risk of cardiovascular events. We previously showed that BDNF correlates with better cardiac function in Duchenne muscular dystrophy (DMD) patients. However, the effect of the Val66Met polymorphism on cardiac function has not been determined. The goal of the current study was to determine the effects of rs6265 on BDNF biomarker suitability and DMD cardiac functions more generally. We assessed cardiovascular and skeletal muscle function in human DMD patients segregated by polymorphic allele. We also compared echocardiographic, electrophysiologic, and cardiomyocyte contractility in C57/BL-6 wild-type mice with rs6265 polymorphism and in mdx/mTR (mDMD) mouse model of DMD. In human DMD patients, plasma BDNF levels had a positive correlation with left ventricular function, opposite to that seen in rs6265 carriers. There was also a substantial decrease in skeletal muscle function in carriers compared to the Val homozygotes. Surprisingly, the opposite was true when cardiac function of DMD carriers and non-carriers were compared. On the other hand, Val66Met wild-type mice had only subtle functional differences at baseline but significantly decreased cardiomyocyte contractility. Our results indicate that the Val66Met polymorphism alters myocyte contractility, conferring worse skeletal muscle function but better cardiac function in DMD patients. Moreover, these results suggest a mechanism for the relative preservation of cardiac tissues compared to skeletal muscle in DMD patients and underscores the complexity of BDNF signaling in response to mechanical workload.


2021 ◽  
Vol 22 (22) ◽  
pp. 12251
Author(s):  
Marta Tomczyk ◽  
Alicja Braczko ◽  
Patrycja Jablonska ◽  
Adriana Mika ◽  
Kamil Przyborowski ◽  
...  

Dyslipidemia is commonly linked to skeletal muscle dysfunction, accumulation of intramyocellular lipids, and insulin resistance. However, our previous research indicated that dyslipidemia in apolipoprotein E and low-density lipoprotein receptor double knock-out mice (ApoE/LDLR -/-) leads to improvement of exercise capacity. This study aimed to investigate in detail skeletal muscle function and metabolism in these dyslipidemic mice. We found that ApoE/LDLR -/- mice showed an increased grip strength as well as increased troponins, and Mhc2 levels in skeletal muscle. It was accompanied by the increased skeletal muscle mitochondria numbers (judged by increased citrate synthase activity) and elevated total adenine nucleotides pool. We noted increased triglycerides contents in skeletal muscles and increased serum free fatty acids (FFA) levels in ApoE/LDLR -/- mice. Importantly, Ranolazine mediated inhibition of FFA oxidation in ApoE/LDLR -/- mice led to the reduction of exercise capacity and total adenine nucleotides pool. Thus, this study demonstrated that increased capacity for fatty acid oxidation, an adaptive response to dyslipidemia leads to improved cellular energetics that translates to increased skeletal muscle strength and contributes to increased exercise capacity in ApoE/LDLR -/- mice.


1999 ◽  
Vol 18 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Larry C Lands ◽  
Argyrios A Smountas ◽  
Giulia Mesiano ◽  
L Brosseau ◽  
Hani Shennib ◽  
...  

2020 ◽  
Vol 45 (3) ◽  
pp. 240-250 ◽  
Author(s):  
Logan A. Pendergrast ◽  
Eric C. Leszczynski ◽  
Joseph R. Visker ◽  
Ashley N. Triplett ◽  
David P. Ferguson

Undernutrition during early life causes chronic disease with specific impairments to the heart and skeletal muscle. The purpose of this study was to determine the effects of early life undernutrition on adult exercise capacity as a result of cardiac and skeletal muscle function. Pups were undernourished during gestation (GUN) or lactation (PUN) using a cross-fostering nutritive mouse model. At postnatal day 21, all mice were weaned and refed a control diet. At postnatal day 67, mice performed a maximal treadmill test. Echocardiography and Doppler blood flow analysis was performed at postnatal day 72, following which skeletal muscle cross-sectional area (CSA) and fiber type were determined. Maximal running capacity was reduced (diet: P = 0.0002) in GUN and PUN mice. Left ventricular mass (diet: P = 0.03) and posterior wall thickness during systole (diet × sex: P = 0.03) of GUN and PUN mice was reduced, causing PUN mice to have reduced (diet: P = 0.04) stroke volume. Heart rate of GUN mice showed a trend (diet: P = 0.07) towards greater resting values than other groups. PUN mice had greater CSA of soleus fibers. PUN had a reduced (diet: P = 0.03) proportion of type-IIX fibers in the extensor digitorum longus (EDL) and a greater (diet: P = 0.008) percentage of type-IIB fibers in the EDL. In conclusion, gestational and postnatal undernourishment impairs exercise capacity.


Sign in / Sign up

Export Citation Format

Share Document