scholarly journals Tendon structure quantified using ultrasound imaging differs based on location and training type

2018 ◽  
Vol 125 (6) ◽  
pp. 1743-1748 ◽  
Author(s):  
Kenton L. Hagan ◽  
Todd Hullfish ◽  
Ellen Casey ◽  
Josh R. Baxter

Achilles tendinopathy is 10 times more common among running athletes compared with age-matched peers. Load-induced tendon remodeling and its progression in an at-risk population of developing symptomatic tendinopathy are not well understood. The purpose of this study was to prospectively characterize Achilles and patellar tendon structure in competitive collegiate distance runners over different competitive seasons using quantitative ultrasound imaging. Twenty-two collegiate cross-country runners and eleven controls were examined for this study. Ultrasound images of bilateral Achilles and patellar tendons were obtained near the start and end of the collegiate cross-country season and the conclusion outdoor track season. Collagen organization, mean echogenicity, tendon thickness, and neovascularity were determined using well-established image processing techniques. Achilles tendon collagen was less aligned in runners compared with controls (28% greater) but improved slightly (7% decrease) after the completion of the track season. Conversely, patellar tendons in runners were similar to control tendons throughout the cross-country season but underwent collagen alignment (17% decrease) and tendon hypertrophy (21% increase). Our findings indicate that Achilles tendon structure in trained runners differs structurally from control tendons but is stable throughout training while patellar tendon structure changes in response to the transition in training volume between cross-country and track seasons. These findings expand upon prior reports that some degree of tendon remodeling may act as a protective adaptation for sport specific loading. NEW & NOTEWORTHY In this study we prospectively examined the Achilles and patellar tendon structure of distance runners to determine if continued training through multiple seasons elicits tendon remodeling or pathology. We found that Achilles and patellar tendons respond uniquely to the changing loads required during each season. Achilles tendon collagen alignment is mostly stable throughout the competitive cycle, but the patellar tendon structurally remodels following the transition from cross-country to track season.

2018 ◽  
Author(s):  
Kenton L. Hagan ◽  
Todd Hullfish ◽  
Ellen Casey ◽  
Josh R. Baxter

AbstractAchilles tendinopathy is ten-times more common amongst running athletes compared to age-matched peers. Load induced tendon remodeling and its progression in an at-risk population of developing symptomatic tendinopathy is not well understood. The purpose of this study was to prospectively characterize Achilles and patellar tendon structure in competitive collegiate distance runners over different competitive seasons using quantitative ultrasound imaging. Twenty-two collegiate cross country runners and eleven controls were examined for this study. Longitudinal and cross-sectional ultrasound images of bilateral Achilles and patellar tendons were obtained at the one week prior to start of formal collegiate cross country practices, one week after the conclusion of cross country season, and one week prior to outdoor track and field championships. Collagen organization, mean echogenicity, tendon thickness, and neovascularity were determined using well established image processing techniques. We found that Achilles and patellar tendons respond differently to high-volume running and transitions from one sport season to another, suggesting that tendon structure is sensitive to differences in tendon loading biomechanics. Our findings indicate that Achilles tendon structure in trained runners differ structurally to control tendons but is stable throughout training while patellar tendon structure changes in response to the transition in training volume between cross country and track seasons. These findings expand upon prior reports that some degree of tendon remodeling may act as a protective adaptation for sport specific loading.News and NoteworthyIn this study we prospectively examined the Achilles and patellar tendon structure of distance runners to determine if continued training through multiple seasons elicits tendon remodeling or pathology. We found that Achilles and patellar tendons respond uniquely to the changing loads required during each season. Achilles tendon collagen alignment is mostly stable throughout the competitive cycle, but the patellar tendon undergoes structural changes following the transition from cross-country to track season.


2018 ◽  
Author(s):  
Todd J. Hullfish ◽  
Kenton L. Hagan ◽  
Ellen Casey ◽  
Josh R. Baxter

AbstractAchilles tendon structure differs between trained distance runners and healthy controls, but the progression of tendon remodeling over the course of a competitive season is poorly understood. Therefore, the purpose of this study was to quantify Achilles tendon structure at the beginning and completion of a cross country season. We hypothesized that athletes who did not develop tendinopathy would not present with changes in tendon structure. Ultrasound assessments of the right Achilles tendon mid-substance were performed to quantify tendon organization, thickness, and echogenicity. Subjective structural measures and reported outcomes were also collected to determine if tendinopathy was present in any of the subjects. None of the subjects developed symptomatic tendinopathy over the course of the competitive season, but one runner did show signs of mild neovascularization. Tendon organization and echogenicity did not change over the course of the season. Tendon thickness increased by 7% (P < 0.001) but the effect size was small (d = 0.36). Runners who do not develop symptomatic tendinopathy have habituated tendon structure that may serve as a protective mechanism against the rigors of distance running. Monitoring tendon structure may serve as a means of detecting signs of structural indicators of tendinopathy prior to the presentation of symptoms.


2018 ◽  
Author(s):  
Todd J. Hullfish ◽  
Kenton L. Hagan ◽  
Ellen Casey ◽  
Josh R. Baxter

AbstractAchilles tendinopathy affects many running athletes and often leads to chronic pain and functional deficits. While changes in tendon structure have been linked with tendinopathy, the effects of distance running on tendon structure is not well understood. Therefore, the purpose of this study was to characterize structural differences in the Achilles tendons in healthy young adults and competitive distance runners using quantitative ultrasound analyses. We hypothesized that competitive distance runners with no clinical signs or symptoms of tendinopathy would have quantitative signs of tendon damage, characterized by decreased collagen alignment and echogenicity, in addition to previous reports of thicker tendons. Longitudinal ultrasound images of the right Achilles tendon mid-substance were acquired in competitive distance runners and recreationally-active adults. Collagen organization, mean echogenicity, and tendon thickness were quantified using image processing techniques. Clinical assessments confirmed that runners had no signs or symptoms of tendinopathy and controls were only included if they had no history of Achilles tendon pain or injuries. Runner tendons were 40% less organized, 48% thicker, and 41% less echogenic compared to the control tendons (p < 0.001). Young adults engaged in competitive distance-running have structurally different tendons than recreationally-active young adults. While these structural differences have been associated with tendon damage, the lack of clinical symptoms of tendinopathy may suggest that these detected differences may either be precursors of tendinopathy development or protective adaptations to cyclic tendon loading experienced during running.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Corinne N. Riggin ◽  
Joseph J. Sarver ◽  
Benjamin R. Freedman ◽  
Stephen J. Thomas ◽  
Louis J. Soslowsky

Achilles tendon ruptures are traumatic injuries, and techniques for assessing repair outcomes rely on patient-based measures of pain and function, which do not directly assess tendon healing. Consequently, there is a need for a quantitative, in vivo measure of tendon properties. Therefore, the purpose of this study was to validate ultrasound imaging for evaluating collagen organization in tendons. In this study, we compared our novel, high-frequency ultrasound (HFUS) imaging and analysis method to a standard measure of collagen organization, crossed polarizer (CP) imaging. Eighteen mouse Achilles tendons were harvested and placed into a testing fixture where HFUS and CP imaging could be performed simultaneously in a controlled loading environment. Two experiments were conducted: (1) effect of loading on collagen alignment and (2) effect of an excisional injury on collagen alignment. As expected, it was found that both the HFUS and CP methods could reliably detect an increase in alignment with increasing load, as well as a decrease in alignment with injury. This HFUS method demonstrates that structural measures of collagen organization in tendon can be determined through ultrasound imaging. This experiment also provides a mechanistic evaluation of tissue structure that could potentially be used to develop a targeted approach to aid in rehabilitation or monitor return to activity after tendon injury.


2018 ◽  
Vol 125 (2) ◽  
pp. 453-458 ◽  
Author(s):  
Todd J. Hullfish ◽  
Kenton L. Hagan ◽  
Ellen Casey ◽  
Josh R. Baxter

Achilles tendinopathy affects many running athletes and often leads to chronic pain and functional deficits. Although changes in tendon structure have been linked with tendinopathy, the effects of distance running on tendon structure are not well understood. Therefore, the purpose of this study was to characterize structural differences in the Achilles tendons in healthy young adults and competitive distance runners using quantitative ultrasound analyses. We hypothesized that competitive distance runners with no clinical signs or symptoms of tendinopathy would have quantitative signs of tendon damage, characterized by decreased collagen alignment and echogenicity, in addition to previous reports of thicker tendons. Longitudinal ultrasound images of the right Achilles tendon midsubstance were acquired in competitive distance runners and recreationally active adults. Collagen organization, mean echogenicity, and tendon thickness were quantified using image processing techniques. Clinical assessments confirmed that runners had no signs or symptoms of tendinopathy, and controls were only included if they had no history of Achilles tendon pain or injuries. Runner tendons were 40% less organized, 48% thicker, and 41% less echogenic compared with the control tendons ( P < 0.001). Young adults engaged in competitive distance running have structurally different tendons than recreationally active young adults. NEW & NOTEWORTHY In this study, we quantified the Achilles tendon substructure in distance runners, and a control group of young adults, to determine whether distance running elicits structural adaptations of the tendon. We found that competitive distance runners have structurally compromised Achilles tendons despite not showing any clinical signs or symptoms of tendon injury. These findings suggest that distance running may stimulate structural changes as a protective mechanism against tendon pain and dysfunction.


Author(s):  
Daniel M Cushman ◽  
Ziva Petrin ◽  
Sarah Eby ◽  
Nathan D. Clements ◽  
Peter Haight ◽  
...  

Diagnosis ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Elham Kebriyaei ◽  
Ali Davoodi ◽  
Seyed Alinaghi Kazemi ◽  
Zahra Bazargani

Abstract Objectives Renal anomalies are the most common fetal abnormalities that occur during prenatal development, and are typically detected by observing hydronephrosis on fetal ultrasound imaging. Follow-up with post-natal ultrasound is important to detect clinically-important obstruction, because many of the pre-natal abnormalities resolve spontaneously. This study aimed to evaluate the postnatal hydronephrosis follow-up rate, and reasons for non follow-up in affected neonates. Methods In this cross-sectional study all neonates born during a period of one year at Ayatollah Mousavi Hospital with hydronephrosis on fetal ultrasound imaging were recruited. All mothers were also given face-to-face information about fetal hydronephrosis and its postnatal outcomes, and follow-up with at least a postnatal ultrasound was recommended from the fourth day of their neonates’ birth until the end of the fourth week. The neonates were subsequently observed for one month to determine the postnatal ultrasound follow-up rate and to reflect on diagnostic test results, reasons for failure to follow-up, as well as causes of hydronephrosis. Results In this study, 71 cases (1.2%) out of 5,952 neonates had fetal hydronephrosis on prenatal ultrasound images. The postnatal ultrasound imaging showed kidney involvement in 18 neonates (25%), particularly in the left kidney (61.1%). Seven neonates had no follow-up at one month (10%). No significant relationship was found between lack of follow-up and the neonates’ place of residence (p=0.42), maternal education (p=0.90), number of siblings (p=0.33), or gender (p=0.64). Conclusions Postnatal ultrasound follow-up rate in these neonates with a history of fetal hydronephrosis was incomplete even though parents had been provided with education and advice at their birth time. Accordingly, it is recommended to perform postnatal ultrasound once neonates are discharged from hospitals.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1698.2-1699
Author(s):  
I. Mahmoud ◽  
S. Rahmouni ◽  
A. Ben Tekaya ◽  
S. Bouden ◽  
R. Tekaya ◽  
...  

Background:Entheseal involvement is a frequent and distinctive feature of psoriatic arthritis (PsA), often under diagnosed. It is especially associated with nail involvement. Because clinical examination is not sensitive enough for the detection of early signs of this involvement, US may be considered as an alternative imaging technique in the diagnosis of enthesopathy.Objectives:The aim of the present study is to evaluate US entheses abnormalities in PsA and their correlation with clinical characteristicsMethods:The study included patients diagnosed with PsA according to the CASPAR criteria. They underwent a thorough clinical examination with special regard to the presence of enthesitis using the Spondyloarthritis Research Consortium of Canada (SPARCC) Enthesitis Index.The US study bilaterally explored entheses at six sites: proximal plantar fascia, distal Achilles tendon, distal and proximal patellar tendon insertion, distal quadriceps tendon and distal brachial triceps tendon. We evaluated the following elemental lesions of enthesis at each site: thickness and structure of the tendon, calcifications, bursae, erosions, power Doppler signal in bursa or enthesis full tendon.Results:Of the 33 patients, 39.4 % were male. The mean age was 51.2±12.5 years. The mean disease duration was 13.5±10.2 years.The mean DAPSA was 22.8± 19.7 [0.1-84.5]: remission(n=9), low activity (n=5),moderate activity (n=11),high activity(n=8).At inclusion, 11 patients (33.4%) patients presented with psoriatic onychopathy (45 fingernails) with a mean mNAPSI of 14.1±16. Out of the 528 entheseal sites, 92 were tender at the palpation (17,4%) with a mean SPARCC at 2.87.A total of 396 entheseal sites were examined by US. In 140 of them (35.35%), US found at least 1 sign indicative of enthesopathy. The most affected tendon was the distal Achilles tendon (42/396), followed by proximal plantar fascia (32/396), distal patellar tendon (20/396), quadriceps tendon (20/396), distal brachial triceps tendon(14/396) and finally proximal patellar tendon (12/396).The most common elemental lesions were enthsophytes (176), erosions (114) and calcifications (50).We found a positive correlation between age and both calcification (r=0,4, p=0.021) and enthesophytes (r=0.479, p=0.005).We found a positive correlation between enthesophyte and the tender and swollen joints count (r= 0.352, p=0.045, r=0.378, p=0.03) and the SPARCC score (r=0.397, p=0.022).Patients with higher BASDAI had thicker tendons (r=0.355, p=0.05).Patients with nail dystrophy had more bursitis and erosions.US scores did not correlate with sexe, disease duration and disease activity measures (ASDAS, DAPSA, DAS28 and PASI). Patients with subclinical entheseal involvement didn’t have higher inflammatory biomarkers (ESR, CRP).Conclusion:US subclinical enthesopthy are not rare in psoriatic arthritis, in particular in patients with active disease.Clinical nail involvement was associated with bursitis and erosions. New studies including larger study groups are required to verify the findings of the present studyDisclosure of Interests:None declared


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2535
Author(s):  
Thomas Stöggl ◽  
Dennis-Peter Born

The aims of the study were to assess the robustness and non-reactiveness of wearable near-infrared spectroscopy (NIRS) technology to monitor exercise intensity during a real race scenario, and to compare oxygenation between muscle groups important for cross-country skiing (XCS). In a single-case study, one former elite XCS (age: 39 years, peak oxygen uptake: 65.6 mL/kg/min) was equipped with four NIRS devices, a high-precision global navigation satellite system (GNSS), and a heart rate (HR) monitor during the Vasaloppet long-distance XCS race. All data were normalized to peak values measured during incremental laboratory roller skiing tests two weeks before the race. HR reflected changes in terrain and intensity, but showed a constant decrease of 0.098 beats per minute from start to finish. Triceps brachii (TRI) muscle oxygen saturation (SmO2) showed an interchangeable pattern with HR and seems to be less affected by drift across the competition (0.027% drop per minute). Additionally, TRI and vastus lateralis (VL) SmO2 revealed specific loading and unloading pattern of XCS in uphill and downhill sections, while rectus abdominus (RA) SmO2 (0.111% drop per minute) reflected fatigue patterns occurring during the race. In conclusion, the present preliminary study shows that NIRS provides a robust and non-reactive method to monitor exercise intensity and fatigue mechanisms when applied in an outdoor real race scenario. As local exercise intensity differed between muscle groups and central exercise intensity (i.e., HR) during whole-body endurance exercise such as XCS, NIRS data measured at various major muscle groups may be used for a more detailed analysis of kinetics of muscle activation and compare involvement of upper body and leg muscles. As TRI SmO2 seemed to be unaffected by central fatigue mechanisms, it may provide an alternative method to HR and GNSS data to monitor exercise intensity.


1990 ◽  
Vol 2 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Lee N. Cunningham

To compare the physiologic differences between adolescent male and female cross-country runners, 12 male and 12 female high school nonelite distance runners who had competed successfully at the All State 5-km championship cross-country meet were tested in the laboratory. Data were analyzed in relation to maximal oxygen consumption (VO2max), ventilatory threshold (VT), and running economy (RE). Male runners were taller, heavier, had less body fat, and ran faster by 2 minutes and 18 seconds than female runners. Running economy was similar between gender. VO2 at a 215 m•min−1 pace was 46.7 ml•kg−1•min−1 for male runners and 47.8 ml•kg−1•min−1 for female runners. At the VT, males demonstrated a higher VO2 and treadmill velocity than females. Heart rate, percent HR max, and percent VO2 max at the VT were not different between gender. Males demonstrated a higher VO2 max of 74.6 versus 66.1 ml•kg−1•min−1 than female runners. The fractional utilization of VO2 at race pace was not different between males (90%) and females (91%). In conclusion, the primary physiologic determinant for performance differences between nonelite, competitive male and female adolescent distance runners is associated with VO2 max.


Sign in / Sign up

Export Citation Format

Share Document