Colchicine attenuates left ventricular hypertrophy but preserves cardiac function of aortic-constricted rats

2003 ◽  
Vol 94 (4) ◽  
pp. 1627-1633 ◽  
Author(s):  
Beatriz S. Scopacasa ◽  
Vicente P. A. Teixeira ◽  
Kleber G. Franchini

To investigate the effects of colchicine on left ventricular (LV) function and hypertrophy (LVH) of rats subjected to constriction of transverse aorta (TAoC), we evaluated SO (sham operated, vehicle; n = 25), SO-T (sham operated, colchicine 0.4 mg/kg body wt ip daily; n = 38), TAoC (vehicle; n = 37), and TAoC-T (TAoC, colchicine; n = 34) on the 2nd, 6th, and 15th day after surgery. Colchicine attenuated LVH of TAoC-T compared with TAoC rats, as evaluated by ratio between LV mass (LVM) and right ventricular mass, LV wall thickness, and average diameter of cardiac myocytes. Systolic gradient across TAoC (∼45 mmHg), LV systolic pressure, LV end-diastolic pressure, and rate of LV pressure increase (+dP/d t) were comparable in TAoC-T and TAoC rats. However, the baseline and increases of LV systolic pressure-to-LVM and +dP/d t-to-LVMratios induced by phenylephrine infusion were greater in TAoC-T and SO-T compared with SO rats. Baseline and increases of +dP/d t-to-LVM ratio were reduced in TAoC compared with SO rats. TAoC rats increased polymerized fraction of tubulin compared with SO, SO-T, and TAoC-T rats. Our results indicate that colchicine treatment reduced LVH to pressure overload but preserved LV function.

2005 ◽  
Vol 289 (4) ◽  
pp. H1643-H1651 ◽  
Author(s):  
Xiang-Bin Xu ◽  
Jin-Jiang Pang ◽  
Ji-Min Cao ◽  
Chao Ni ◽  
Rong-Kun Xu ◽  
...  

Growth hormone (GH)-releasing peptides (GHRP), a class of synthetic peptidyl GH secretagogues, have been reported to exert a cardioprotective effect on cardiac ischemia. However, whether GHRP have a beneficial effect on chronic heart failure (CHF) is unclear, and the present work aims to clarify this issue. At 9 wk after pressure-overload CHF was created by abdominal aortic banding in rats, one of four variants of GHRP (GHRP-1, -2, and -6 and hexarelin, 100 μg/kg) or saline was injected subcutaneously twice a day for 3 wk. Echocardiography and cardiac catheterization were performed to monitor cardiac function and obtain blood samples for hormone assay. GHRP treatment significantly improved left ventricular (LV) function and remodeling in CHF rats, as indicated by increased LV ejection fraction, LV end-systolic pressure, and diastolic posterior wall thickness and decreased LV end-diastolic pressure and LV end-diastolic dimension. GHRP also significantly alleviated development of cardiac cachexia, as shown by increases in body weight and tibial length in CHF rats. Plasma CA, renin, ANG II, aldosterone, endothelin-1, and atrial natriuretic peptide were significantly elevated in CHF rats but were significantly decreased in GHRP-treated CHF rats. GHRP suppressed cardiomyocyte apoptosis and increased cardiac GH secretagogue receptor mRNA expression in CHF rats. GHRP also decreased myocardial creatine kinase release in hypophysectomized rats subjected to acute myocardial ischemia. We conclude that chronic administration of GHRP alleviates LV dysfunction, pathological remodeling, and cardiac cachexia in CHF rats, at least in part by suppressing stress-induced neurohormonal activations and cardiomyocyte apoptosis.


2008 ◽  
Vol 294 (3) ◽  
pp. H1274-H1281 ◽  
Author(s):  
Xinhua Yan ◽  
Adam J. T. Schuldt ◽  
Robert L. Price ◽  
Ivo Amende ◽  
Fen-Fen Liu ◽  
...  

The role of the angiotensin II type 2 (AT2) receptor in cardiac hypertrophy remains controversial. We studied the effects of AT2 receptors on chronic pressure overload-induced cardiac hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes. Left ventricular (LV) hypertrophy was induced by ascending aorta banding (AS). Transgenic mice overexpressing AT2 (AT2TG-AS) and nontransgenic mice (NTG-AS) were studied after 70 days of aortic banding. Nonbanded NTG mice were used as controls. LV function was determined by catheterization via LV puncture and cardiac magnetic resonance imaging. LV myocyte diameter and interstitial collagen were determined by confocal microscopy. Atrial natriuretic polypeptide (ANP) and brain natriuretic peptide (BNP) were analyzed by Northern blot. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2, inducible nitric oxide synthase (iNOS), endothelial NOS, ERK1/2, p70S6K, Src-homology 2 domain-containing protein tyrosine phosphatase-1, and protein serine/threonine phosphatase 2A were analyzed by Western blot. LV myocyte diameter and collagen were significantly reduced in AT2TG-AS compared with NTG-AS mice. LV anterior and posterior wall thickness were not different between AT2TG-AS and NTG-AS mice. LV systolic and diastolic dimensions were significantly higher in AT2TG-AS than in NTG-AS mice. LV systolic pressure and end-diastolic pressure were lower in AT2TG-AS than in NTG-AS mice. ANP, BNP, and SERCA2 were not different between AT2TG-AS and NTG-AS mice. Phospholamban (PLB) and the PLB-to-SERCA2 ratio were significantly higher in AT2TG-AS than in NTG-AS mice. iNOS was higher in AT2TG-AS than in NTG-AS mice but not significantly different. Our results indicate that AT2 receptor overexpression modified the pathological hypertrophic response to aortic banding in transgenic mice.


1978 ◽  
Vol 235 (6) ◽  
pp. H767-H775 ◽  
Author(s):  
G. A. Geffin ◽  
M. A. Vasu ◽  
D. D. O'Keefe ◽  
D. G. Pennington ◽  
A. J. Erdmann ◽  
...  

In dogs anesthetized with chloralose-urethan on right heart bypass, left ventricular (LV) performance was assessed at constant LV stroke work before and for up to 2.5 h after crystalloid hemodilution was established. Lowering the hematocrit from 43.3 +/- 1.3% to 13.6 +/- 1.7% (SE) did not significantly change LV end-diastolic pressure (LVEDP) initially. After 80 min LVEDP increased slightly by 1.7 +/- 0.6 cmH2O (P less than 0.05) at a stroke work of 17.3 +/- 2.3 g.m. The value of dP/dt did not change significantly throughout. When LV function curves were generated by increasing cardiac output, the stroke work attained at an LVEDP of 10 cmH2O decreased with hemodilution from 23.9 +/- 3.5 to 20.8 +/- 3.9 g.m (NS). LV wall water content increased with hemodilution, from which it could be calculated that there was an 18.6% increase in LV mass. Thus, despite an increase in LV external girth demonstrated by LV circumferential gauges, it is possible that increased wall thickness due to the water gain resulted in little change or an actual decrease in LV end-diastolic volume. Thus, profound hemodilution can be attained with only slight depression of LV performance.


2014 ◽  
Vol 307 (5) ◽  
pp. H752-H761 ◽  
Author(s):  
William M. Yarbrough ◽  
Catalin Baicu ◽  
Rupak Mukherjee ◽  
An Van Laer ◽  
William T. Rivers ◽  
...  

Historically, the tissue inhibitors of matrix metalloproteinases (TIMPs) were considered monochromatic in function. However, differential TIMP profiles more recently observed with left ventricular (LV) dysfunction and matrix remodeling suggest more diverse biological roles for individual TIMPs. This study tested the hypothesis that cardiac-specific overexpression (TIMP-4OE) or deletion (knockout; TIMP-4KO) would differentially affect LV function and structure following pressure overload (LVPO). LVPO (transverse aortic constriction) was induced in mice (3.5 ± 0.1 mo of age, equal sex distribution) with TIMP-4OE ( n = 38), TIMP-4KO ( n = 24), as well as age/strain-matched wild type (WT, n = 25), whereby indexes of LV remodeling and function such as LV mass and ejection fraction (LVEF) were determined at 28 days following LVPO. Following LVPO, both early (7 days) and late (28 days) survival was ∼25% lower in the TIMP-4KO group ( P < 0.05). While LVPO increased LV mass in all groups, the relative hypertrophic response was attenuated with TIMP-4OE. With LVPO, LVEF was similar between WT and TIMP-4KO (48 ± 2% and 45 ± 3%, respectively) but was higher with TIMP-4OE (57 ± 2%, P < 0.05). With LVPO, LV myocardial collagen expression (type I, III) increased by threefold in all groups ( P < 0.05), but surprisingly this response was most robust in the TIMP-4KO group. These unique findings suggest that increased myocardial TIMP-4 in the context of a LVPO stimulus may actually provide protective effects with respect to survival, LV function, and extracellular matrix (ECM) remodeling. These findings challenge the canonical belief that increased levels of specific myocardial TIMPs, such as TIMP-4 in and of themselves, contribute to adverse ECM accumulation following a pathological stimulus, such as LVPO.


1993 ◽  
Vol 265 (3) ◽  
pp. H810-H819 ◽  
Author(s):  
J. Hung ◽  
W. Y. Lew

Twelve anesthetized rabbits received endotoxin (175 +/- 38 micrograms/kg i.v., mean +/- SD) to evaluate the temporal sequence of alterations in left ventricular (LV) function. LV volume was calculated from LV minor- and long-axis diameters, and wall thickness was measured with sonomicrometers. Hypotension, acidosis, and hypoxia were immediately corrected to eliminate these causes of myocardial depression. LV dilation developed early (1.2 +/- 0.5 h) with a significant (21 +/- 23%) increase in end-diastolic volume measured at a LV end-diastolic pressure of 5 +/- 6 mmHg. The LV stiffness did not change, and the LV dilation did not progressively worsen. Significant systolic depression developed later (2.8 +/- 1.0 h) with a 32 +/- 22% increase in end-systolic volume measured at a LV end-systolic pressure of 69 +/- 9 mmHg. The late preterminal phase (4.1 +/- 0.8 h) was characterized by a progressive increase in end-systolic volume (73 +/- 41% above control) and a significant (53 +/- 34%) increase in tau, the time constant of LV pressure fall. Diastolic abnormalities (LV dilation and increased tau) were not attributable to depressed contractility or altered hemodynamics. We conclude that endotoxin impairs systolic and diastolic LV function with distinct differences in time course. This suggests that contractility, relaxation, and passive LV properties are impaired by different endotoxin-mediated pathways and/or have different sensitivities to endotoxin.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Jaemin Byun ◽  
Dominic P Del Re ◽  
Peiyong Zhai ◽  
Akihiro Shirakabe ◽  
Junichi Sadoshima

Yes-Associated Protein (YAP), a downstream effector of the Hippo pathway, plays an important role in regulating cell proliferation and survival in mammalian cells. We have shown that cardiac-specific loss of YAP leads to increased cardiomyocyte (CM) apoptosis and impaired hypertrophy during chronic myocardial infarction in the mouse heart. However, it remains unclear whether YAP mediates hypertrophy of individual CMs under stress conditions in vivo. We hypothesized that endogenous YAP plays an essential role in mediating hypertrophy and survival of CMs in response to pressure overload (PO). Three-month-old YAP+/fl;α-MHC-Cre (YAP-cKO) and YAP+/fl (control) mice were subjected to transverse aortic constriction (TAC). Two weeks later, YAP-cKO and control mice developed similar levels of cardiac hypertrophy (left ventricular (LV) weight/tibia length: 7.27±0.38, 6.93±0.29) compared to sham (5.08±0.14, 4.07±0.33). LV CM cross sectional area was similarly increased by TAC in YAP-cKO and control mice compared to their respective shams. Induction of fetal-type genes, such as Anf and Myh7, was also similar in YAP-cKO and control mice. YAP-cKO and control mice exhibited similar baseline LV systolic function (ejection fraction (EF): 75, 76%). YAP-cKO mice had significantly decreased LV function after TAC compared to Sham-control mice (EF: 51%, 76%, p<0.05) and TAC-control mice (75%, p<0.05). LV end diastolic pressure (LVEDP, mmHg) was significantly increased (19.3 ±3.2, 9.8±1.6, p<0.05), and LV +dP/dt (mmHg/s, 7250±588, 9500±453, p<0.01) and -dP/dt (mmHg/s, 6000±433, 7781± 314, p<0.05) were significantly decreased in YAP-cKO compared to in control mice after TAC. LV end diastolic diameter (mm) was significantly greater in YAP-cKO than in control mice after TAC (3.95±0.11, 3.35±0.15, p<0.05), whereas LV pressure was similar, suggesting that LV wall stress was elevated in YAP-cKO compared to in control mice. Since cardiac hypertrophy in YAP-cKO mice is similar to that in control mice despite elevated wall stress, the lack of YAP appears to limit the extent of cardiac hypertrophy in response to increased wall stress. These data suggest that endogenous YAP plays an important role in mediating adaptive hypertrophy and protecting the heart against PO.


1984 ◽  
Vol 62 (12) ◽  
pp. 1505-1510 ◽  
Author(s):  
S. Roux ◽  
J. G. Latour ◽  
P. Théroux ◽  
J. P. Clozel ◽  
M. G. Bourassa

The systemic and inotropic properties of prostaglandin E1 (PGE1) were investigated in 20 unanesthetized dogs. Pairs of ultrasonic dimension gauges and a micromanometer were implanted in the subendocardium and the apex of the left ventricle (LV), respectively. Seven to ten days later, increasing doses of PGE1 were infused into the left atrium. To appreciate the inotropic effects of the agent, the heart rate was maintained constant at 150 beats/min in a subgroup of dogs while preload was modified by bleeding or saline infusion over matched ranges of end-diastolic segmental length (EDL) during placebo and PGE1 infusions (0.25 μg∙kg−1∙min−1). LV function curves (ΔL: systolic segmental shortening versus EDL) were plotted. Increasing doses of PGE1 above 0.031 μg∙kg−1∙min−1 brought a progressive decrease of left ventricular end-diastolic pressure, EDL, ΔL, and peak left ventricular systolic pressure. The heart rate increased significantly at dosages from 0.063 to 0.125 μg∙kg−1∙min−1, and peak positive dP/dt after an initial increase fell at the dose of 0.5 μg∙kg−1∙min−1. The LV function curves invariably showed a shift to the left when PGE1 was administered; as the basal EDL was restored during PGE, infusion, ΔL reached a 33% increase (p < 0.001). Thus, in addition to its potent vasodilating properties that are more prominent on preload than afterload, PGE1 increases myocardial contractility in the conscious dog.


2011 ◽  
Vol 300 (3) ◽  
pp. H1062-H1068 ◽  
Author(s):  
Ricardo J. Gelpi ◽  
Misun Park ◽  
Shumin Gao ◽  
Sunil Dhar ◽  
Dorothy E. Vatner ◽  
...  

It is widely held that myocyte apoptosis in left ventricular hypertrophy (LVH) contributes to left ventricle (LV) dysfunction and heart failure. The main goal of this investigation was to determine if there is a statistical relationship among LV hypertrophy, apoptosis and LV function, and importantly whether the apoptosis occurs in myocytes or nonmyocytes in the heart. We used both rat and canine models of severe LVH induced by chronic thoracic aortic banding with resultant LV-aortic pressure gradients 145–155 mmHg and increases in LV/body weight of 58 and 70%. These models also provided the ability to examine transmural apoptosis in LVH. In both models, the overwhelming majority (88%) of apoptotic cells were nonmyocytes. The regressions for apoptosis vs. LVH were stronger for nonmyocytes than myocytes and also stronger in the subendocardium than the subepicardium. Importantly, LV systolic and diastolic wall stresses were normal, indicating that the apoptosis could not be attributed to LV stretch or heart failure. In addition, there was no relationship between the extent of apoptosis and LV ejection fraction, which actually increased ( P < 0.05), in the face of elevated LV systolic pressure, indicating that greater apoptosis did not result in a decrease in LV function. Thus, in response to chronic, severe pressure overload, LVH in the absence of LV dilation, and elevated LV wall stress, apoptosis occurred predominantly in nonmyocytes in the myocardial interstitium, more in the subendocardium than the subepicardium. The extent of apoptosis was linearly related to the amount of LV hypertrophy, but not to LV function.


1988 ◽  
Vol 255 (6) ◽  
pp. H1525-H1534 ◽  
Author(s):  
R. J. Gelpi ◽  
L. Hittinger ◽  
A. M. Fujii ◽  
V. M. Crocker ◽  
I. Mirsky ◽  
...  

To determine the alterations in left ventricular (LV) function and the mechanisms involved that occur during the development of perinephritic hypertension, dogs were instrumented with a miniature LV pressure transducer, aortic and left atrial catheters, and ultrasonic crystals to measure LV diameter in the short and long axes and wall thickness. At 2 wk after initiation of perinephritic hypertension, increases (P less than 0.05) were observed in LV systolic pressure, LV end-diastolic pressure, both short- and long-axis end-diastolic diameters, calculated LV end-diastolic volume, stroke volume, global average LV systolic wall stress, first derivative of LV pressure (LV dP/dt), and ejection fraction, whereas mean velocity of circumferential fiber shortening (Vcf) and rate of change of LV short-axis diameter (LV dD/dt) rose but not significantly. At three levels of matched preload and afterload induced by the administration of graded doses of phenylephrine, Vcf, LV dD/dt, and LV dP/dt increased in hypertension compared with the same levels of preload and afterload before hypertension. When the loading conditions in the normotensive and hypertensive dogs were matched, either after ganglionic blockade or beta-adrenergic blockade, both isovolumic and ejection-phase indexes of LV function remained similar before and after hypertension. Thus we conclude that 1) LV function in intact, conscious dogs with early hypertension is enhanced, and 2) the major mechanism for the increase in LV function involves the sympathetic nervous system.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Reinhard G Ketelhut ◽  
Ulrich Rode ◽  
Jörg Schröter

Introduction : Increased left ventricular (LV) mass is known to be an important risk for future cardiovascular morbidity and mortality. Since high blood pressure can be observed more often in early childhood a study was designed to evaluate the influence of blood pressure (BP) on LV mass and function in children. Methods: 2-D-guided-echocardiography and Doppler-echocardiography were performed in 103 children (aged 14.1±0.9 years, 58 girls). BP, LV-mass-index (LVMI) and diastolic function (E/A ratio) were measured and calculated by standardized formula and procedure. Results: Systolic BP (SBP) was significantly higher in boys (124.8±10.6 mmHg) when compared with girls (120.5±8.4 mmHg) (p<0.01). There were no significant differences in diastolic pressure. LVMI was significantly lower in girls (57.6±8.9 g/m 2 ) than in boys (68.3±11.2 g/m 2 ) (p<0.01). There was a negative correlation between SBP and E/A ratio as a measure of LV diastolic function (p<0.01). Hypertensives had a 17% higher LVMI (78±11g/m 2 versus 67±11g/m 2 ; p<0.05), and a 20% lower E/A ratio (1.58±0.3 versus 1.97±0.42) than their normotensive counterparts (p<0.01). Conclusion: Despite the young age of participants with higher blood pressure they had prognostically adverse preclinical cardiovascular disease, including LV hypertrophy and evidence of impaired LV function. Therefore children should be encouraged to enter preventive programs as a primary and early strategy against future cardiovascular morbidity and mortality.


Sign in / Sign up

Export Citation Format

Share Document