scholarly journals Reactive oxygen species cause endothelial dysfunction in chronic flow overload

2011 ◽  
Vol 110 (2) ◽  
pp. 520-527 ◽  
Author(s):  
X. Lu ◽  
X. Guo ◽  
C. D. Wassall ◽  
M. D. Kemple ◽  
J. L. Unthank ◽  
...  

Although elevation of shear stress increases production of vascular reactive oxygen species (ROS), the role of ROS in chronic flow overload (CFO) has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. In six swine, CFO in carotid arteries was induced by contralateral ligation for 1 wk. In an additional group, six swine received apocynin (NADPH oxidase blocker and anti-oxidant) treatment in conjunction with CFO for 1 wk. The blood flow in carotid arteries increased from 189.2 ± 25.3 ml/min (control) to 369.6 ± 61.9 ml/min (CFO), and the arterial diameter increased by 8.6%. The expressions of endothelial nitric oxide synthase (eNOS), p22/p47phox, and NOX2/NOX4 were upregulated. ROS production increased threefold in response to CFO. The endothelium-dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. Although the process of CFO remodeling to restore the wall shear stress has been thought of as a physiological response, the present data implicate NADPH oxidase-produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO.

2006 ◽  
Vol 290 (1) ◽  
pp. C66-C76 ◽  
Author(s):  
Tatyana Milovanova ◽  
Shampa Chatterjee ◽  
Yefim Manevich ◽  
Irina Kotelnikova ◽  
Kris DeBolt ◽  
...  

Acute cessation of flow (ischemia) leads to depolarization of the endothelial cell (EC) membrane mediated by KATP channels and followed by production of reactive oxygen species (ROS) from NADPH oxidase. We postulated that ROS are a signal for initiating EC proliferation associated with the loss of shear stress. Flow cytometry was used to identify proliferating CD31-positive pulmonary microvascular endothelial cells (mPMVECs) from wild-type, Kir6.2−/−, and gp91 phox−/− mice. mPMVECs were labeled with PKH26 and cultured in artificial capillaries for 72 h at 5 dyn/cm2 (flow adaptation), followed by 24 h of stop flow or continued flow. ROS production during the first hour of ischemia was markedly diminished compared with wild-type mice in both types of gene-targeted mPMVECs. Cell proliferation was defined as the proliferation index (PI). After 72 h of flow, >98% of PKH26-labeled wild-type mPMVECs were at a single peak (PI 1.0) and the proportion of cells in the S+G2/M phases were at 5.8% on the basis of cell cycle analysis. With ischemia (24 h), PI increased to 2.5 and the ratio of cells in S+G2/M phases were at 35%. Catalase, diphenyleneiodonium, and cromakalim markedly inhibited ROS production and cell proliferation in flow-adapted wild-type mPMVECs. Significant effects of ischemia were not observed in Kir6.2−/− and gp91 phox−/− cells. ANG II activation of NADPH oxidase was unaffected by KATP gene deletion. Thus loss of shear stress in flow-adapted mPMVECs results in cell division associated with ROS generated by NADPH oxidase. This effect requires a functioning cell membrane KATP channel.


Endocrinology ◽  
2007 ◽  
Vol 148 (1) ◽  
pp. 160-165 ◽  
Author(s):  
Ichiro Chinen ◽  
Michio Shimabukuro ◽  
Ken Yamakawa ◽  
Namio Higa ◽  
Toshihiro Matsuzaki ◽  
...  

Vascular endothelial dysfunction has been demonstrated in obesity, but the molecular basis for this link has not been clarified. We examined the role of free fatty acids (FFA) on vascular reactivity in the obese fa/fa Zucker diabetic fatty (ZDF) rat. Addition of acetylcholine produced a dose-dependent relaxation in aortic rings of ZDF and lean +/+ rats, but the ED50 value was higher in ZDF (−6.80 ± 0.05 vs. −7.11 ± 0.05 log10 mol/liter, P = 0.033). A 2-wk treatment with a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, pitavastatin (3 mg/kg/d) or a reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, apocynin (5 mmol/liter in drinking water), improved the response in ZDF (ED50, −7.16 ± 0.03 and −7.14 ± 0.05 log10 mol/liter, P = 0.008 and P = 0.015 vs. vehicle, respectively). Vasodilator response to sodium nitroprusside was identical between ZDF and +/+ rats. Vascular reactive oxygen species (ROS) levels and NADPH oxidase activity in aorta were increased in ZDF rats but were decreased by pitavastatin. In in vitro cell culture, intracellular ROS signal and NADPH oxidase subunit mRNA were increased by palmitate, but this palmitate-induced ROS production was inhibited by NADPH oxidase inhibitor or pitavastatin. In conclusion, FFA-induced NADPH oxidase subunit overexpression and ROS production could be involved in the endothelial dysfunction seen in obese ZDF rats, and this could be protected by pitavastatin or NADPH oxidase inhibitors.


2007 ◽  
Vol 19 (1) ◽  
pp. 208
Author(s):  
N. W. K. Karja ◽  
K. Kikuchi ◽  
M. Ozawa ◽  
M. Fahrudin ◽  
T. Somfai ◽  
...  

Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase), an enzyme required to catalyze the oxidation of NADPH to NADP during the metabolism of glucose via the pentose phosphate pathway (PPP), was considered as contributing to intracellular reactive oxygen species (ROS) production. Production of superoxide anion and H2O2 via NADPH oxidase has been reported on a rabbit blastocyst surface (Manes and Lai 1995 J. Reprod. Fertil. 104, 69–75). The objective of this study was to examine the effects on in vitro development and intracellular ROS content after the addition of diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, or dehydroepiandrosterone (DHEA), an inhibitor of glucose-6-phosphate dehydrogenase (G6PDH), to culture medium during the early embryonic development of in vitro-produced (IVP) porcine embryos. To confirm that these inhibitors lead to reduction in NADPH concentration in the embryo and hence likely to be inhibiting the PPP, a brilliant cresyl blue (BCB) test was performed on Day 2 (the day of insemination = Day 0) of culture. Porcine cumulus–oocyte complexes were matured and fertilized in vitro as described previously (Kikuchi et al. 2002 Biol. Reprod. 66, 1033–1041). Prezumptive zygotes were then cultured in NCSU-37 supplemented with 5.5 mM glucose and DPI at concentrations of 0.5 or 1 nM or DHEA at concentrations of 10 or 100 �M (DPI-0.5, DPI-1, DHEA-10 and DHEA-100 groups, respectively) from Day 0 to Day 2 of culture. All of the embryos were cultured subsequently until Day 6 in NCSU-37 supplemented with only 5.5 mM glucose. Data were analyzed by ANOVA. On Day 6, the development to the blastocyst stage of embryos in DPI-0.5, DPI-1, DHEA-10, and DHEA-100 groups were 16.1, 17.6, 16.1, and 19.5%, respectively, which were not significantly different from that of the control group (17.5%) (n d 165 per group, 5 replicates). However, the mean cell number in blastocysts derived from DPI-1, DHEA-10, and DHEA-100 groups (40.8 � 2.3, 39.3 � 1.7, and 42.5 � 2.7, respectively) was significantly higher (P < 0.01) than those in the control (33.4 � 1.6) and DPI-0.5 (32.7 � 1.6) groups. At 20 min after an exposure to BCB, the percentage of BCB+ embryos in DPI-1, DHEA-10, and DHEA-100 groups (73.8, 79.9, and 77.8%, respectively) were significantly higher (P < 0.01) than those in the control and DPI-0.5 groups (42% and 53.9%, respectively) (n = 81-92 per group, 6 replicates), indicating that these two inhibitors effectively induce the reduction of NADPH concentration in the embryos. Moreover, the addition of DPI at 1 nM or DHEA at 10 or 100 �M significantly decreased the H2O2 content of Day 2 embryos as compared with control embryos (n = 48-53 per group, 7 replicates). These results suggest that the addition of either DPI or DHEA to the medium during the first 2 days of culture did not impair the development of the embryos to the blastocyst stage. Decrease of cellular ROS production in Day 2 embryos in this study is interpreted as a result of inhibition of the NADPH oxidase by DPI or of the G6PDH by DHEA.


2010 ◽  
Vol 23 (8) ◽  
pp. 1012-1021 ◽  
Author(s):  
Carole Dubreuil-Maurizi ◽  
Sophie Trouvelot ◽  
Patrick Frettinger ◽  
Alain Pugin ◽  
David Wendehenne ◽  
...  

The molecular mechanisms underlying the process of priming are poorly understood. In the present study, we investigated the early signaling events triggered by β-aminobutyric acid (BABA), a well-known priming-mediated plant resistance inducer. Our results indicate that, in contrast to oligogalacturonides (OG), BABA does not elicit typical defense-related early signaling events nor defense-gene expression in grapevine. However, in OG-elicited cells pretreated with BABA, production of reactive oxygen species (ROS) and expression of the respiratory-burst oxidase homolog RbohD gene were primed. In response to the causal agent of downy mildew Plasmopara viticola, a stronger ROS production was specifically observed in BABA-treated leaves. This process was correlated with an increased resistance. The NADPH oxidase inhibitor diphenylene iodonium (DPI) abolished this primed ROS production and reduced the BABA-induced resistance (BABA-IR). These results suggest that priming of an NADPH oxidase–dependent ROS production contributes to BABA-IR in the Vitis-Plasmopara pathosystem.


2011 ◽  
Vol 300 (6) ◽  
pp. H2035-H2043 ◽  
Author(s):  
Julie Favre ◽  
Ji Gao ◽  
An Di Zhang ◽  
Isabelle Remy-Jouet ◽  
Antoine Ouvrard-Pascaud ◽  
...  

The deleterious effects of aldosterone excess demonstrated in cardiovascular diseases might be linked in part to coronary vascular dysfunction. However, whether such vascular dysfunction is a cause or a consequence of the changes occurring in the cardiomyocytes is unclear. Moreover, the possible link between mineralocorticoid receptor (MR)-mediated effects on the cardiomyocyte and the coronary arteries is unknown. Thus we used a mouse model with conditional, cardiomyocyte-specific overexpression of human MR (hMR) and observed the effects on endothelial function in isolated coronary segments. hMR overexpression decreased the nitric oxide (NO)-mediated relaxing responses to acetylcholine in coronary arteries (but not in peripheral arteries), and this was prevented by a 1-mo treatment either with an MR antagonist, vitamin E/vitamin C, or a NADPH oxidase inhibitor. hMR overexpression did not affect coronary endothelial NO synthase content nor its level of phosphorylation on serine 1177, but increased cardiac levels of reactive oxygen species, cardiac NADPH oxidase (NOX) activity, and expression of the NOX subunit gp91phox, which was limited to endothelial cells. Thus an increase in hMR activation, restricted to cardiomyocytes, is sufficient to induce a severe coronary endothelial dysfunction. We suggest a new paracrine mechanism by which cardiomyocytes trigger a NOX-dependent, reactive oxygen species-mediated coronary endothelial dysfunction.


2017 ◽  
Vol 95 (5) ◽  
pp. 474-480 ◽  
Author(s):  
Ting-Bo Li ◽  
Jie-Jie Zhang ◽  
Bin Liu ◽  
Xiu-Ju Luo ◽  
Qi-Lin Ma ◽  
...  

NADPH oxidase (NOX) is a major source of reactive oxygen species (ROS) in the body and it plays a key role in mediation of oxidative injury in the cardiovascular system. The purposes of this study are to evaluate the status of NOX in endothelial progenitor cells (EPCs) of hyperlipidemic rats and to determine whether NOX-derived ROS promotes the dysfunction of EPCs. The rats were fed on a high-fat diet for 8 weeks to establish a hyperlipidemic rat model, which showed the increased plasma lipids and the impaired functions of circulating EPCs (including the reduced abilities in migration and adhesion) accompanied by an increase in NOX activity and ROS production. Next, EPCs were isolated from normal rats and they were treated with oxidized low-density lipoprotein (ox-LDL) (100 μg/mL) for 24 h to induce a dysfunctional model in vitro. In agreement with our findings in vivo, ox-LDL treatment increased the dysfunctions of EPCs concomitant with an increase in NOX activity and ROS production; these phenomena were reversed by the NOX inhibitor. Based on these observations, we conclude that NOX-derived ROS involved in the dysfunctions of circulating EPCs in hyperlipidemic rats and inhibition of NOX might provide a novel strategy to improve EPC functions in hyperlipidemia.


Sign in / Sign up

Export Citation Format

Share Document