scholarly journals Variability in training-induced skeletal muscle adaptation

2011 ◽  
Vol 110 (3) ◽  
pp. 846-853 ◽  
Author(s):  
James A. Timmons

When human skeletal muscle is exposed to exercise training, the outcomes, in terms of physiological adaptation, are unpredictable. The significance of this fact has long been underappreciated, and only recently has progress been made in identifying some of the molecular bases for the heterogeneous response to exercise training. It is not only of great medical importance that some individuals do not substantially physiologically adapt to exercise training, but the study of the heterogeneity itself provides a powerful opportunity to dissect out the genetic and environmental factors that limit adaptation, directly in humans. In the following review I will discuss new developments linking genetic and transcript abundance variability to an individual's potential to improve their aerobic capacity or endurance performance or induce muscle hypertrophy. I will also comment on the idea that certain gene networks may be associated with muscle “adaptability” regardless the stimulus provided.

Function ◽  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Davis A Englund ◽  
Vandré C Figueiredo ◽  
Cory M Dungan ◽  
Kevin A Murach ◽  
Bailey D Peck ◽  
...  

Abstract Satellite cells are required for postnatal development, skeletal muscle regeneration across the lifespan, and skeletal muscle hypertrophy prior to maturity. Our group has aimed to address whether satellite cells are required for hypertrophic growth in mature skeletal muscle. Here, we generated a comprehensive characterization and transcriptome-wide profiling of skeletal muscle during adaptation to exercise in the presence or absence of satellite cells in order to identify distinct phenotypes and gene networks influenced by satellite cell content. We administered vehicle or tamoxifen to adult Pax7-DTA mice and subjected them to progressive weighted wheel running (PoWeR). We then performed immunohistochemical analysis and whole-muscle RNA-seq of vehicle (SC+) and tamoxifen-treated (SC−) mice. Further, we performed single myonuclear RNA-seq to provide detailed information on how satellite cell fusion affects myonuclear transcription. We show that while skeletal muscle can mount a robust hypertrophic response to PoWeR in the absence of satellite cells, growth, and adaptation are ultimately blunted. Transcriptional profiling reveals several gene networks key to muscle adaptation are altered in the absence of satellite cells.


2003 ◽  
Vol 284 (5) ◽  
pp. H1668-H1678 ◽  
Author(s):  
Pamela G. Lloyd ◽  
Barry M. Prior ◽  
Hsiao T. Yang ◽  
Ronald L. Terjung

Angiogenesis occurs in skeletal muscle in response to exercise training. To gain insight into the regulation of this process, we evaluated the mRNA expression of factors implicated in angiogenesis over the course of a training program. We studied sedentary control ( n = 17) rats and both sedentary ( n = 18) and exercise-trained ( n = 48) rats with bilateral femoral artery ligation. Training consisted of treadmill exercise (4 times/day, 1–24 days). Basal mRNA expression in sedentary control muscle was inversely related to muscle vascularity. Angiogenesis was histologically evident in trained white gastrocnemius muscle by day 12. Training produced initial three- to sixfold increases in VEGF, VEGF receptors (KDR and Flt), the angiopoietin receptor (Tie-2), and endothelial nitric oxide synthase mRNA, which dissipated before the increase in capillarity, and a substantial (30- to 50-fold) but transient upregulation of monocyte chemoattractant protein 1 mRNA. These results emphasize the importance of early events in regulating angiogenesis. However, we observed a sustained elevation of the angiopoietin 2-to-angiopoietin 1 ratio, suggesting continued vascular destabilization. The response to exercise was (in general) tempered in high-oxidative muscles. These findings place importance on cellular events coupled to the onset of angiogenesis.


2021 ◽  
Vol 30 (1) ◽  
pp. 34-42
Author(s):  
Dong-Won Lee ◽  
Sung-Hee Oh ◽  
Kyung-Oh Choi ◽  
Jeong-Sun Ju

PURPOSE:The combined effect of acetic acid supplementation and endurance exercise training on fatty acid metabolism and skeletal muscle functions are not well known. Therefore, the purpose of this study was to investigate the effects of 8-week acetic acid administration with or without endurance exercise training on fatty acid metabolism and skeletal muscle functions using mice.METHODS: Fourty-eight male wild-type ICR mice (10-week old) were randomly divided into 4 groups: sedentary control (Sed+Con), sedentary sodium acetate (Sed+NaAc), exercise control (Exe+Con) and exercise sodium acetate (Exe+NaAc) groups. For acetic acid diet, sodium acetate was incorporated into the chow diet at 5% (w/w). For the exercise training, mice performed 4 days/week of 20 min treadmill running exercise training for 8 weeks. Following 8 weeks of combined treatments of acetic acid and endurance running exercise training, visceral fat mass and skeletal muscle mass, blood parameters, and the markers for fatty acid metabolism were analyzed. The results were analyzed with one-way ANOVA (p<.05) using the SPSS 21 program.RESULTS: Eight weeks of Exe+NaAc treatment significantly increased maximal running time compared with Sed+Con and Exe+Con groups (p<.05). Eight weeks of Exe+NaAc treatment significantly decreased fatty acid synthesis-related FAS (fatty acid synthase) protein levels compared with the Sed+Con group, and increased fatty acid oxidation-related CPT1B (carnitine palmitoyltransferase 1B) protein levels compared with Sed+Con and Sed+NaAc groups (p<.05). This combined treatment of acetic acid and endurance exercise training also increased AMPK activation compared with the Sed+Con and the Sed+NaAc groups (p<.05).CONCLUSIONS: It was concluded that there were synergistic effects of the treatment of 8-week acetic acid supplementation and endurance exercise training on the reductions of body weight and visceral fat mass and an increase in endurance performance.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Léo Blervaque ◽  
Emilie Passerieux ◽  
Pascal Pomiès ◽  
Matthias Catteau ◽  
Nelly Héraud ◽  
...  

Abstract Chronic obstructive pulmonary disease (COPD) is associated with exercise intolerance and limits the functional gains in response to exercise training in patients compared to sedentary healthy subjects (SHS). The blunted skeletal muscle angiogenesis previously observed in COPD patients has been linked to these limited functional improvements, but its underlying mechanisms, as well as the potential role of oxidative stress, remain poorly understood. Therefore, we compared ultrastructural indexes of angiogenic process and capillary remodelling by transmission electron microscopy in 9 COPD patients and 7 SHS after 6 weeks of individualized moderate-intensity endurance training. We also assessed oxidative stress by plasma-free and esterified isoprostane (F2-IsoP) levels in both groups. We observed a capillary basement membrane thickening in COPD patients only (p = 0.008) and abnormal variations of endothelial nucleus density in response to exercise training in these patients when compared to SHS (p = 0.042). COPD patients had significantly fewer occurrences of pericyte/endothelium interdigitations, a morphologic marker of capillary maturation, than SHS (p = 0.014), and significantly higher levels of F2-IsoP (p = 0.048). Last, the changes in pericyte/endothelium interdigitations and F2-IsoP levels in response to exercise training were negatively correlated (r = − 0.62, p = 0.025). This study is the first to show abnormal capillary remodelling and to reveal impairments during the whole process of angiogenesis (capillary creation and maturation) in COPD patients. Trial registration NCT01183039 & NCT01183052, both registered 7 August 2010 (retrospectively registered).


2019 ◽  
Vol 316 (5) ◽  
pp. E931-E939 ◽  
Author(s):  
Jin-Ho Koh ◽  
Chad R. Hancock ◽  
Dong-Ho Han ◽  
John O. Holloszy ◽  
K. Sreekumaran Nair ◽  
...  

The objective of this study is to determine whether AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), or peroxisome proliferator-activated receptor β (PPARβ) can independently mediate the increase of glucose transporter type 4 (GLUT4) expression that occurs in response to exercise training. We found that PPARβ can regulate GLUT4 expression without PGC-1α. We also found AMPK and PPARβ are important for maintaining normal physiological levels of GLUT4 protein in the sedentary condition as well following exercise training. However, AMPK and PPARβ are not essential for the increase in GLUT4 protein expression that occurs in response to exercise training. We discovered that AMPK activation increases PPARβ via myocyte enhancer factor 2A (MEF2A), which acted as a transcription factor for PPARβ. Furthermore, exercise training increases the cooperation of AMPK and PPARβ to regulate glucose uptake. In conclusion, cooperation between AMPK and PPARβ via NRF-1/MEF2A pathway enhances the exercise training mediated adaptive increase in GLUT4 expression and subsequent glucose uptake in skeletal muscle.


2005 ◽  
Vol 289 (1) ◽  
pp. H455-H465 ◽  
Author(s):  
John P. Konhilas ◽  
Ulrika Widegren ◽  
David L. Allen ◽  
Angelika C. Paul ◽  
Allison Cleary ◽  
...  

Voluntary cage wheel exercise has been used extensively to determine the physiological adaptation of cardiac and skeletal muscle in mice. In this study, we tested the effect of different loading conditions on voluntary cage wheel performance and muscle adaptation. Male C57Bl/6 mice were exposed to a cage wheel with no-resistance (NR), low-resistance (LR), or high-resistance (HR) loads for 7 wk. Power output was elevated (3-fold) under increased loading (LR and HR) conditions compared with unloaded (NR) exercise training. Only unloaded (NR) exercise induced an increase in heart mass, whereas only loaded (LR and HR) exercise training induced an increase in skeletal (soleus) muscle mass. Moreover, unloaded and loaded exercise training had a differential impact on the cross-sectional area of muscle fibers, depending on the type of myosin heavy chain expressed by each fiber. The biochemical adaptation of the heart was characterized by a decrease in genes associated with pathological (but not physiological) cardiac hypertrophy and a decrease in calcineurin expression in all exercise groups. In addition, transcriptional activity of myocyte enhancer factor-2 (MEF-2) was significantly decreased in the hearts of the LR group as determined by a MEF-2-dependent transgene driving the expression of β-galactosidase. Phosphorylation of glycogen synthase kinase-3β, protein kinase B (Akt), and p70 S6 kinase was increased only in the hearts of the NR group, consistent with the significant increase in cardiac mass. In conclusion, unloaded and loaded cage wheel exercise have a differential impact on cage wheel performance and muscle (cardiac and skeletal) adaptation.


2021 ◽  
Vol 11 (9) ◽  
pp. 3905
Author(s):  
Fuminori Kawano

Epigenetics is getting increased attention in the analysis of skeletal muscle adaptation to physiological stimuli. In this review, histone modifications in skeletal muscles and their role in the regulation of muscle characteristics and adaptive changes are highlighted. The distribution of active histone modifications, such as H3K4me3 and H3 acetylation, largely differs between fast- and slow-twitch muscles. It is also indicated that the transcriptional activity in response to exercise differs in these muscle types. Histone turnover activated by exercise training leads to loosening of nucleosomes, which drastically enhances gene responsiveness to exercise, indicating that the exercise training transforms the chromatin structure to an active status. Furthermore, histone modifications play a critical role in preserving the stem cell lineage in skeletal muscle. Lack of lysine-specific demethylase 1 in satellite cells promotes the differentiation into brown adipocytes during muscle regeneration after injury. H4K20me2, which promotes the formation of heterochromatin, is necessary to repress MyoD expression in the satellite cells. These observations indicate that histone modification is a platform that characterizes skeletal muscles and may be one of the factors regulating the range of adaptive changes in these muscles.


2021 ◽  
Author(s):  
Caoileann H. Murphy ◽  
Chris McGlory

AbstractMaster athletes perform high volumes of exercise training yet display lower levels of physical functioning and exercise performance when compared with younger athletes. Several reports in the clinical literature show that long chain n-3 polyunsaturated fatty acid (LC n-3 PUFA) ingestion promotes skeletal muscle anabolism and strength in untrained older persons. There is also evidence that LC n-3 PUFA ingestion improves indices of muscle recovery following damaging exercise in younger persons. These findings suggest that LC n-3 PUFA intake could have an ergogenic effect in master athletes. However, the beneficial effect of LC n-3 PUFA intake on skeletal muscle in response to exercise training in both older and younger persons is inconsistent and, in some cases, generated from low-quality studies or those with a high risk of bias. Other factors such as the choice of placebo and health status of participants also confound interpretation of existing reports. As such, when considered on balance, the available evidence does not indicate that ingestion of LC n-3 PUFAs above current population recommendations (250–500 mg/day; 2 portions of oily fish per week) enhances exercise performance or recovery from exercise training in master athletes. Further work is now needed related to how the dose, duration, and co-ingestion of LC n-3 PUFAs with other nutrients such as amino acids impact the adaptive response to exercise training. This work should also consider how LC n-3 PUFA supplementation may differentially alter the lipid profile of cellular membranes of key regulatory sites such as the sarcolemma, mitochondria, and sarcoplasmic reticulum.


Sign in / Sign up

Export Citation Format

Share Document