scholarly journals The influence of physical training on the angiopoietin and VEGF-A systems in human skeletal muscle

2007 ◽  
Vol 103 (3) ◽  
pp. 1012-1020 ◽  
Author(s):  
T. Gustafsson ◽  
H. Rundqvist ◽  
J. Norrbom ◽  
E. Rullman ◽  
E. Jansson ◽  
...  

Eleven subjects performed one-legged exercise four times per week for 5 wk. The subjects exercised one leg for 45 min with restricted blood flow (R leg), followed by exercise with the other leg at the same absolute workload with unrestricted blood flow (UR leg). mRNA and protein expression were measured in biopsies from the vastus lateralis muscle obtained at rest before the training period, after 10 days, and after 5 wk of training, as well as 120 min after the first and last exercise bouts. Basal Ang-2 and Tie-1 mRNA levels increased in both legs with training. The Ang-2-to-Ang-1 ratio increased to a greater extent in the R leg. The changes in Ang-2 mRNA were followed by similar changes at the protein level. In the R leg, VEGF-A mRNA expression responded transiently after acute exercise both before and after the 5-wk training program. Over the course of the exercise program, there was a concurrent increase in basal VEGF-A protein and VEGFR-2 mRNA in the R leg. Ki-67 mRNA showed a greater increase in the R leg and the protein was localized to the endothelial cells. In summary, the increased translation of VEGF-A is suggested to be caused by the short mRNA burst induced by each exercise bout. The concurrent increase in the Ang-2-to-Ang-1 ratio and the VEGF-expression combined with the higher level of Ki-67 mRNA in the R leg indicate that changes in these systems are of importance also in nonpathological angiogenic condition such as voluntary exercise in humans. It further establish that hypoxia/ischemia-related metabolic perturbation is likely to be involved as stimuli in this process in human skeletal muscle.

2000 ◽  
Vol 279 (2) ◽  
pp. H772-H778 ◽  
Author(s):  
R. S. Richardson ◽  
H. Wagner ◽  
S. R. D. Mudaliar ◽  
E. Saucedo ◽  
R. Henry ◽  
...  

Angiogenesis is a component of the multifactoral adaptation to exercise training, and vascular endothelial growth factor (VEGF) is involved in extracellular matrix changes and endothelial cell proliferation. However, there is limited evidence supporting the role of VEGF in the exercise training response. Thus we studied mRNA levels of VEGF, using quantitative Northern analysis, in untrained and trained human skeletal muscle at rest and after a single bout of exercise. Single leg knee-extension provided the acute exercise stimulus and the training modality. Four biopsies were collected from the vastus lateralis muscle at rest in the untrained and trained conditions before and after exercise. Training resulted in a 35% increase in muscle oxygen consumption and an 18% increase in number of capillaries per muscle fiber. At rest, VEGF/18S mRNA levels were similar before (0.38 ± 0.04) and after (1.2 ± 0.4) training. When muscle was untrained, acute exercise greatly elevated VEGF/18S mRNA levels (16.9 ± 6.7). The VEGF/18S mRNA response to acute exercise in the trained state was markedly attenuated (5.4 ± 1.3). These data support the concept that VEGF is involved in exercise-induced skeletal muscle angiogenesis and appears to be subject to a negative feedback mechanism as exercise adaptations occur.


2009 ◽  
Vol 106 (3) ◽  
pp. 804-812 ◽  
Author(s):  
Eric Rullman ◽  
Jessica Norrbom ◽  
Anna Strömberg ◽  
Dick Wågsäter ◽  
Helene Rundqvist ◽  
...  

In the present study, the effect of exercise training on the expression and activity of matrix metalloproteinases (MMPs) in the human skeletal muscle was investigated. Ten subjects exercised one leg for 45 min with restricted blood flow and then exercised the other leg at the same absolute workload with unrestricted blood flow. The exercises were conducted four times per week for 5 wk. Biopsies were taken from the vastus lateralis muscles of both legs at rest before the training period, after 10 days and 5 wk of training, and 2 h after the first exercise bout for analysis of MMP and tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA, enzyme activity, and protein expression. Levels of MMP-2, MMP-14, and TIMP-1 mRNA in muscle tissue increased after 10 days of training regardless of blood flow condition. MMP-2 mRNA level in laser-dissected myofibers and MMP-2 activity in whole muscle increased with training. The level of MMP-9 mRNA and activity increased after the first bout of exercise. Although MMP-9 mRNA levels appeared to be very low, the activity of MMP-9 after a single bout of exercise was similar to that of MMP-2 after 10 days of exercise. MMP-2 and MMP-9 protein was both present throughout the extracellular matrix of the muscle, both around fibers and capillaries, but MMP-2 was also present within the skeletal muscle fibers. These results show that MMPs are activated in skeletal muscle in nonpathological conditions such as voluntary exercise. The expression and time pattern indicate differences between the MMPs in regards of production sites as well as in the regulating mechanism.


1978 ◽  
Vol 45 (6) ◽  
pp. 852-857 ◽  
Author(s):  
P. D. Gollnick ◽  
J. Karlsson ◽  
K. Piehl ◽  
B. Saltin

Experiments were conducted to examine the conversions of phosphorylase b to phosphorylase a in human skeletal muscle during bicycle exercise or isometric contractions. Muscle biopsies were obtained from the vastus lateralis with the needle technique at rest and either during or immediately after activity and frozen in liquid nitrogen within 2--4 s. Total phosphorylase and phosphorylase a activities were differentiated by measurement in the presence and absence of AMP, respectively. At rest 8.5% of the total phosphorylase activity existed in the a form. Little or no change in the percent of phosphorylase in the a form occurred during voluntary dynamic or static muscular activity that produced muscle lactate concentrations in excess of 18 mmol.kg-1 wet muscle. Electrical stimulation of the vastus lateralis muscle also failed to produce an increase in the percentage of phosphorylase a. These data suggest that during exercise the conversion of phosphorylase to the a form is of minor importance. An increased activity of phosphorylase b due to changes in muscle concentrations of ATP, AMP, and inorganic phosphate may regulate glycogenolysis during voluntary exercise in man.


2019 ◽  
Vol 316 (4) ◽  
pp. E605-E614 ◽  
Author(s):  
Daniil V. Popov ◽  
Pavel A. Makhnovskii ◽  
Elena I. Shagimardanova ◽  
Guzel R. Gazizova ◽  
Evgeny A. Lysenko ◽  
...  

Reduction in daily activity leads to dramatic metabolic disorders, while regular aerobic exercise training is effective for preventing this problem. The purpose of this study was to identify genes that are directly related to contractile activity in human skeletal muscle, regardless of the level of fitness. Transcriptome changes after the one-legged knee extension exercise in exercised and contralateral nonexercised vastus lateralis muscle of seven men were evaluated by RNA-seq. Transcriptome change at baseline after 2 mo of aerobic training (5/wk, 1 h/day) was evaluated as well. Postexercise changes in the transcriptome of exercised muscle were associated with different factors, including circadian oscillations. To reveal transcriptome response specific for endurance-like contractile activity, differentially expressed genes between exercised and nonexercised muscle were evaluated at 1 and 4 h after the one-legged exercise. The contractile activity-specific transcriptome responses were associated only with an increase in gene expression and were regulated mainly by CREB/ATF/AP1-, MYC/MAX-, and E2F-related transcription factors. Endurance training-induced changes (an increase or decrease) in the transcriptome at baseline were more pronounced than transcriptome responses specific for acute contractile activity. Changes after training were associated with widely different biological processes than those after acute exercise and were regulated by different transcription factors (IRF- and STAT-related factors). In conclusion, adaptation to regular exercise is associated not only with a transient (over several hours) increase in expression of many contractile activity-specific genes, but also with a pronounced change (an increase or decrease) in expression of a large number of genes under baseline conditions.


2004 ◽  
Vol 287 (2) ◽  
pp. R397-R402 ◽  
Author(s):  
Lotte Jensen ◽  
Henriette Pilegaard ◽  
P. Darrell Neufer ◽  
Ylva Hellsten

The present study investigated the effect of an acute exercise bout on the mRNA response of vascular endothelial growth factor (VEGF) splice variants in untrained and trained human skeletal muscle. Seven habitually active young men performed one-legged knee-extensor exercise training at an intensity corresponding to ∼70% of the maximal workload in an incremental test five times/week for 4 wk. Biopsies were obtained from the vastus lateralis muscle of the trained and untrained leg 40 h after the last training session. The subjects then performed 3 h of two-legged knee-extensor exercise, and biopsies were obtained from both legs after 0, 2, 6, and 24 h of recovery. Real-time PCR was used to examine the expression of VEGF mRNA containing exon 1 and 2 (all VEGF isoforms), exon 6 or exon 7, and VEGF165mRNA. Acute exercise induced an increase ( P < 0.05) in total VEGF mRNA levels as well as VEGF165and VEGF splice variants containing exon 7 at 0, 2, and 6 h of recovery. The increase in VEGF mRNA was higher in the untrained than in the trained leg ( P < 0.05). The results suggest that in human skeletal muscle, acute exercise increases total VEGF mRNA, an increase that appears to be explained mainly by an increase in VEGF165mRNA. Furthermore, 4 wk of training attenuated the exercise-induced response in skeletal muscle VEGF165mRNA.


2009 ◽  
Vol 296 (4) ◽  
pp. R1140-R1148 ◽  
Author(s):  
Stefan P. Mortensen ◽  
José González-Alonso ◽  
Laurids T. Bune ◽  
Bengt Saltin ◽  
Henriette Pilegaard ◽  
...  

Plasma ATP is thought to contribute to the local regulation of skeletal muscle blood flow. Intravascular ATP infusion can induce profound limb muscle vasodilatation, but the purinergic receptors and downstream signals involved in this response remain unclear. This study investigated: 1) the role of nitric oxide (NO), prostaglandins, and adenosine as mediators of ATP-induced limb vasodilation and 2) the expression and distribution of purinergic P2 receptors in human skeletal muscle. Systemic and leg hemodynamics were measured before and during 5–7 min of femoral intra-arterial infusion of ATP [0.45–2.45 μmol/min] in 19 healthy male subjects with and without coinfusion of NG-monomethyl-l-arginine (l-NMMA; NO formation inhibitor; 12.3 ± 0.3 (SE) mg/min), indomethacin (INDO; prostaglandin formation blocker; 613 ± 12 μg/min), and/or theophylline (adenosine receptor blocker; 400 ± 26 mg). During control conditions, ATP infusion increased leg blood flow (LBF) from baseline conditions by 1.82 ± 0.14 l/min. When ATP was coinfused with either l-NMMA, INDO, or l-NMMA + INDO combined, the increase in LBF was reduced by 14 ± 6, 15 ± 9, and 39 ± 8%, respectively (all P < 0.05), and was associated with a parallel lowering in leg vascular conductance and cardiac output and a compensatory increase in leg O2 extraction. Infusion of theophylline did not alter the ATP-induced leg hyperemia or systemic variables. Real-time PCR analysis of the mRNA content from the vastus lateralis muscle of eight subjects showed the highest expression of P2Y2 receptors of the 10 investigated P2 receptor subtypes. Immunohistochemistry showed that P2Y2 receptors were located in the endothelium of microvessels and smooth muscle cells, whereas P2X1 receptors were located in the endothelium and the sacrolemma. Collectively, these results indicate that NO and prostaglandins, but not adenosine, play a role in ATP-induced vasodilation in human skeletal muscle. The expression and localization of the nucleotide selective P2Y2 and P2X1 receptors suggest that these receptors may mediate ATP-induced vasodilation in skeletal muscle.


2021 ◽  
Vol 22 (3) ◽  
pp. 1208
Author(s):  
Pavel A. Makhnovskii ◽  
Roman O. Bokov ◽  
Fedor A. Kolpakov ◽  
Daniil V. Popov

Inactivity is associated with the development of numerous disorders. Regular aerobic exercise is broadly used as a key intervention to prevent and treat these pathological conditions. In our meta-analysis we aimed to identify and compare (i) the transcriptomic signatures related to disuse, regular and acute aerobic exercise in human skeletal muscle and (ii) the biological effects and transcription factors associated with these transcriptomic changes. A standardized workflow with robust cut-off criteria was used to analyze 27 transcriptomic datasets for the vastus lateralis muscle of healthy humans subjected to disuse, regular and acute aerobic exercise. We evaluated the role of transcriptional regulation in the phenotypic changes described in the literature. The responses to chronic interventions (disuse and regular training) partially correspond to the phenotypic effects. Acute exercise induces changes that are mainly related to the regulation of gene expression, including a strong enrichment of several transcription factors (most of which are related to the ATF/CREB/AP-1 superfamily) and a massive increase in the expression levels of genes encoding transcription factors and co-activators. Overall, the adaptation strategies of skeletal muscle to decreased and increased levels of physical activity differ in direction and demonstrate qualitative differences that are closely associated with the activation of different sets of transcription factors.


2009 ◽  
Vol 161 (3) ◽  
pp. 427-434 ◽  
Author(s):  
Helene Rundqvist ◽  
Eric Rullman ◽  
Carl Johan Sundberg ◽  
Helene Fischer ◽  
Katarina Eisleitner ◽  
...  

Objective:Erythropoietin receptor (EPOR) expression in non-hematological tissues has been shown to be activated by locally produced and/or systemically delivered EPO. Improved oxygen homeostasis, a well-established consequence of EPOR activation, is very important for human skeletal muscle performance. In the present study we investigate whether human skeletal muscle fibers and satellite cells express EPOR and if it is activated by exercise.Design and methodsTen healthy males performed 65 min of cycle exercise. Biopsies were obtained from the vastus lateralis muscle and femoral arterio-venous differences in EPO concentrations were estimated.ResultsThe EPOR protein was localized in areas corresponding to the sarcolemma and capillaries. Laser dissection identified EPOR mRNA expression in muscle fibers. Also, EPOR mRNA and protein were both detected in human skeletal muscle satellite cells. In the initial part of the exercise bout there was a release of EPO from the exercising leg to the circulation, possibly corresponding to an increased bioavailability of EPO. After exercise, EPOR mRNA and EPOR-associated JAK2 phosphorylation were increased.ConclusionsInteraction with JAK2 is required for EPOR signaling and the increase found in phosphorylation is therefore closely linked to the activation of EPOR. The receptor activation by acute exercise suggests that signaling through EPOR is involved in exercise-induced skeletal muscle adaptation, thus extending the biological role of EPO into the skeletal muscle.


2001 ◽  
Vol 90 (3) ◽  
pp. 1031-1035 ◽  
Author(s):  
Muna Khassaf ◽  
Robert B. Child ◽  
Anne McArdle ◽  
David A. Brodie ◽  
Cristian Esanu ◽  
...  

Previous studies in animals have demonstrated that a single period of aerobic exercise induces a rise in the skeletal muscle activity of the antioxidant enzymes superoxide dismutase and catalase and an increase in the muscle content of heat shock proteins (HSPs). The purpose of this study was to examine the time course of response of human skeletal muscle superoxide dismutase and catalase activities and the content of HSP60 and HSP70 after a period of exhaustive, nondamaging aerobic exercise. Seven volunteers undertook one-legged cycle ergometry at 70% maximal oxygen uptake for 45 min. Biopsies were obtained from the vastus lateralis muscle 7 days before and at 1, 2, 3, and 6 days after exercise. Muscle superoxide dismutase activity increased to a peak at 3 days postexercise, muscle catalase activities were unchanged, and muscle content of HSP60 and the inducible HSP70 increased by variable amounts to reach means of 190% and 3,100% of preexercise values, respectively, by 6 days postexercise. These data indicate that human skeletal muscle responds to a single bout of nondamaging exercise by increasing superoxide dismutase activity and provide the first evidence of an increase in HSP content of human skeletal muscle after a submaximal exercise bout.


2011 ◽  
Vol 301 (3) ◽  
pp. E456-E466 ◽  
Author(s):  
Boubacar Benziane ◽  
Ulrika Widegren ◽  
Sergej Pirkmajer ◽  
Jan Henriksson ◽  
Nigel K. Stepto ◽  
...  

Phospholemman (PLM, FXYD1) is a partner protein and regulator of the Na+-K+-ATPase (Na+-K+ pump). We explored the impact of acute and short-term training exercise on PLM physiology in human skeletal muscle. A group of moderately trained males ( n = 8) performed a 1-h acute bout of exercise by utilizing a one-legged cycling protocol. Muscle biopsies were taken from vastus lateralis at 0 and 63 min (non-exercised leg) and 30 and 60 min (exercised leg). In a group of sedentary males ( n = 9), we determined the effect of a 10-day intense aerobic cycle training on Na+-K+-ATPase subunit expression, PLM phosphorylation, and total PLM expression as well as PLM phosphorylation in response to acute exercise (1 h at ∼72% V̇o2peak). Biopsies were taken at rest, immediately following, and 3 h after an acute exercise bout before and at the conclusion of the 10-day training study. PLM phosphorylation was increased both at Ser63 and Ser68 immediately after acute exercise (75%, P < 0.05, and 30%, P < 0.05, respectively). Short-term training had no adaptive effect on PLM phosphorylation at Ser63 and Ser68, nor was the total amount of PLM altered posttraining. The protein expressions of α1-, α2-,and β1-subunits of Na+-K+-ATPase were increased after training (113%, P < 0.05, 49%, P < 0.05, and 27%, P < 0.05, respectively). Whereas an acute bout of exercise increased the phosphorylation of PKCα/βII on Thr638/641 pre- and posttraining, phosphorylation of PKCζ/λ on Thr403/410 was increased in response to acute exercise only after the 10-day training. In conclusion, we show that only acute exercise, and not short-term training, increases phosphorylation of PLM on Ser63 and Ser68, and data from one-legged cycling indicate that this effect of exercise on PLM phosphorylation is not due to systemic factors. Our results provide evidence that phosphorylation of PLM may play a role in the acute regulation of the Na+-K+-ATPase response to exercise.


Sign in / Sign up

Export Citation Format

Share Document