scholarly journals Postnatal developmental expressions of neurotransmitters and receptors in various brain stem nuclei of rats

2005 ◽  
Vol 98 (4) ◽  
pp. 1442-1457 ◽  
Author(s):  
Qiuli Liu ◽  
Margaret T. T. Wong-Riley

Previously, we reported that the expression of cytochrome oxidase in a number of brain stem nuclei exhibited a plateau or reduction at postnatal day (P) 3–4 and a dramatic decrease at P12, against a general increase with age. The present study examined the expression of glutamate, N-methyl-d-aspartate receptor subunit 1 (NMDAR1), GABA, GABAB receptors, glycine receptors, and glutamate receptor subunit 2 (GluR2) in the ventrolateral subnucleus of the solitary tract nucleus, nucleus ambiguus, hypoglossal nucleus, medial accessory olivary nucleus, dorsal motor nucleus of the vagus, and cuneate nucleus, from P2 to P21 in rats. Results showed that 1) the expression of glutamate increased with age in a majority of the nuclei, whereas that of NMDAR1 showed heterogeneity among the nuclei; 2) GABA and GABAB expressions decreased with age, whereas that of glycine receptors increased with age; 3) GluR2 showed two peaks, at P3–4 and P12; and 4) glutamate and NMDAR1 showed a significant reduction, whereas GABA, GABAB receptors, glycine receptors, and GluR2 exhibited a concomitant increase at P12. These features were present but less pronounced in hypoglossal nucleus and dorsal motor nucleus of the vagus and were absent in the cuneate nucleus. These data suggest that brain stem nuclei, directly or indirectly related to respiratory control, share a common developmental trend with the pre-Bötzinger complex in having a transient period of imbalance between inhibitory and excitatory drives at P12. During this critical period, the respiratory system may be more vulnerable to excessive exogenous stressors.

2003 ◽  
Vol 95 (6) ◽  
pp. 2285-2291 ◽  
Author(s):  
Qiuli Liu ◽  
Margaret T. T. Wong-Riley

Previously, we reported that cytochrome oxidase (CO) activity in the rat pre-Bötzinger complex (PBC) exhibited a plateau on postnatal days (P) 3–4 and a prominent decrease on P12 (Liu and Wong-Riley, J Appl Physiol 92: 923–934, 2002). These changes were correlated with a concomitant reduction in the expression of glutamate and N-methyl-d-aspartate receptor subunit 1 and an increase in GABA, GABAB, glycine receptor, and glutamate receptor 2. To determine whether changes were limited to the PBC, the present study aimed at examining the expression of CO in a number of brain stem nuclei, with or without known respiratory functions from P0 to P21 in rats: the ventrolateral subnucleus of the solitary tract nucleus, nucleus ambiguus, hypoglossal nucleus, nucleus raphe obscurus, dorsal motor nucleus of the vagus nerve, medial accessory olivary nucleus, spinal nucleus of the trigeminal nerve, and medial vestibular nucleus (MVe). Results indicated that, in all of the brain stem nuclei examined, CO activity exhibited a general increase with age from P0 to P21, with MVe having the slowest rise. Notably, in all of the nuclei examined except for MVe, there was a plateau or decrease at P3–P4 and a prominent rise-fall-rise pattern at P11–P13, similar to that observed in the PBC. In addition, there was a fall-rise-fall pattern at P15–P17 in these nuclei, instead of a plateau pattern in the PBC. Our data suggest that the two postnatal periods with reduced CO activity, P3–P4 and especially P12, may represent common sensitive periods for most of the brain stem nuclei with known or suspected respiratory control functions.


1988 ◽  
Vol 255 (1) ◽  
pp. R182-R187 ◽  
Author(s):  
D. J. McKitrick ◽  
F. R. Calaresu

Atrial natriuretic factor (ANF) has been suggested as a putative neurotransmitter in central pathways involved in the control of the cardiovascular system. To investigate this possibility, 50 nl of 10(-7) M ANF were microinjected into discrete sites in the nucleus of the tractus solitarius (NTS) where baro- and chemoreceptor afferents terminate. Injections into 36 of a total of 66 sites in the NTS of paralyzed artificially ventilated Wistar rats under urethan anesthesia were found to produce a significant decline in heart rate [HR; -9.2 +/- 2.9 (SE) beats/min, P less than 0.05] and mean arterial pressure [MAP; -11.1 +/- 1.2 (SE) mmHg, P less than 0.01]. Similar responses were also present in anesthetized animals breathing spontaneously. Microinjection of an inactive peptide analogue or of saline did not produce cardiovascular changes. It was also found that ANF injection into the cuneate nucleus (20 of 38 sites) and the spinal trigeminal complex (28 of 42 sites) produced a decrease in MAP and HR that were of the same magnitude as those seen in the NTS. Injections of ANF into the medial longitudinal fasciculus (n = 22), hypoglossal nucleus (n = 9), area postrema (n = 16), and dorsal motor nucleus of the vagus (n = 11) did not change HR or MAP. These results suggest that ANF may serve as a neurotransmitter involved in cardiovascular reflexes mediated by specific nuclei in the dorsal medulla.


2004 ◽  
Vol 286 (4) ◽  
pp. R625-R633 ◽  
Author(s):  
Zixi (Jack) Cheng ◽  
Hong Zhang ◽  
Shang Z. Guo ◽  
Robert Wurster ◽  
David Gozal

In previous single-labeling experiments, we showed that neurons in the nucleus ambiguus (NA) and the dorsal motor nucleus of the vagus (DmnX) project to intrinsic cardiac ganglia. Neurons in these two motor nuclei differ significantly in the size of their projection fields, axon caliber, and endings in cardiac ganglia. These differences in NA and DmnX axon cardiac projections raise the question as to whether they target the same, distinct, or overlapping populations of cardiac principal neurons. To address this issue, we examined vagal terminals in cardiac ganglia and tracer injection sites in the brain stem using two different anterograde tracers {1,1′-dioleyl-3,3,3′,3′-tetramethylindocarbocyanine methanesulfonate and 4-[4-(dihexadecylamino)-styryl]- N-methylpyridinium iodide} and confocal microscopy in male Sprague-Dawley rats. We found that 1) NA and DmnX neurons innervate the same cardiac ganglia, but these axons target separate subpopulations of principal neurons and 2) axons arising from neurons in the NA and DmnX in the contralateral sides of the brain stem enter the cardiac ganglionic plexus through separate bundles and preferentially innervate principal neurons near their entry regions, providing topographic mapping of vagal motor neurons in left and right brain stem vagal nuclei. Because the NA and DmnX project to distinct populations of cardiac principal neurons, we propose that they may play different roles in controlling cardiac function.


1995 ◽  
Vol 109 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Yasumasa Tanaka ◽  
Yoshikazu Yoshida ◽  
Minoru Hirano

AbstractTo demonstrate morphologically the neurons participating in the4aryngeal reflex, Fos-expression, activated with tactile stimulation of the laryngeal vestibulum, was mapped in the cat's lower brain stem utilizing immunohistochemistry. In the stimulation group, many Fos-immunoreactive (ir) neurons were recognized in the nucleus tractus solitarii (NTS) from the level of the most rostral portion of the dorsal motor nucleus of the vagus to the level of the most caudal portion of the inferior olivary nucleus (IO), and in the nucleus ambiguus (NA) from the level of the rostral end of the hypoglossal nucleus to the level of the caudal end of the IO, bilaterally. While some Fos-ir cells were found in the spinal nucleus of the trigeminus, they were also found in the reticular nuclei bilaterally. In the control group, Fos-ir cells were distinctly fewer in number than those in the stimulation group. The results suggested that in the brain stem, the laryngeal reflex pathways have more than two synaptic relays through the interneurons in between the NTS and the NA.


1980 ◽  
Vol 238 (1) ◽  
pp. R57-R64 ◽  
Author(s):  
J. Ciriello ◽  
F. R. Calaresu

Experiments were done in cats anesthetized with chloralose, paralyzed and artificially ventilated cats to obtain electrophysiological evidence on the medullary site of origin of vagal cardioinhibitory fibers. The regions of the nucleus ambiguus (AMB), dorsal motor nucleus of the vagus (DMV), nucleus tractus solitarius (NTS), and external cuneate nucleus (ECN) were systematically explored for units responding both to antidromic stimulation of the cardiac branches of the vagus (CBV) and to orthodromic stimulation of the carotid sinus and aortic depressor nerves. Eighty-six single units conforming to these criteria were found in the medulla: 30 in the AMB, 26 in the DMV, 12 in the NTS, 8 in the NTS-DMV border region, and 10 in the ECN. Antidromically evoked spikes had durations of 0.5--2.5 ms and followed stimulation frequencies of 20--500 Hz. The axons of these units conducted at velocities of 3.3--20.8 m/s. The specificity of activation of medullary units by cardioinhibitory fibers was tested in 11 units, which were found to respond consistently with an antidromic spike to stimulation of CBV but not to stimulation of the thoracic vagus. In eight spinal animals low threshold (less than 15 microA) sites eliciting vagal bradycardia were found in the same medullary nuclei where cardioinhibitory units had been located. These results indicate that vagal cardioinhibitory axons, originate in at least three medullary nuclei, the AMB, DMV, and NTS. Unit activity from the ECN may have been recorded from carioinhibitory fibers because of the short duration of the spike potentials.


1992 ◽  
Vol 262 (5) ◽  
pp. L549-L554 ◽  
Author(s):  
D. F. Donnelly ◽  
C. Jiang ◽  
G. G. Haddad

Most mammalian neurons are known to be sensitive to oxygen availability, but the nature of the sensitivity is not well understood. Previous results have suggested that brain stem neurons may respond differently than cortical neurons during oxygen deprivation. We pursued this hypothesis by examining the time course of change in membrane potential (Vm) and input resistance (Rn) during periods of reduced oxygen availability in a tissue slice preparation. Since extracellular potassium is an important factor determining resting membrane potential, extracellular K+ activity, (K+o), was also measured. Adult rat neurons from three regions were recorded: hippocampal CA1 region, hypoglossal nucleus (XII), and dorsal vagal motor nucleus (DMNX). At the end of a 5-min hypoxic exposure, all neurons depolarized and this depolarization was greatest in XII (28.8 +/- 3.2 mV) compared with DMNX (17.8 +/- 3.7 mV) and CA1 (6.7 +/- 4.4 mV). K+o increased in all regions and was larger in DMNX (7.1 +/- 2.6 mM) and XII (5.3 +/- 2.1 mM) compared with CA1 (2.2 +/- 1.4 mM). During more severe oxygen deprivation (anoxia), neurons also depolarized at different rates with XII greater than DMNX greater than CA1. K+o increased markedly (28–36 mM) by 5 min into anoxia, and no statistical difference was observed between regions. From these results we conclude that 1) all cells tested were depolarized after 5 min of hypoxia; however, regional variability exists in the sensitivity to hypoxia; brain stem neurons depolarize faster than cortical neurons; 2) during anoxia, all brain stem and cortical neurons show a major depolarization, and 3) these differences in membrane potential cannot be solely attributed to changes in extracellular K+.


2014 ◽  
Vol 117 (8) ◽  
pp. 848-856 ◽  
Author(s):  
Paul F. Martino ◽  
S. Olesiak ◽  
D. Batuuka ◽  
D. Riley ◽  
S. Neumueller ◽  
...  

The ventilatory CO2 chemoreflex is inherently low in inbred Brown Norway (BN) rats compared with other strains, including inbred Dahl salt-sensitive (SS) rats. Since the brain stem expression of various pH-sensitive ion channels may be determinants of the CO2 chemoreflex, we tested the hypothesis that there would be fewer pH-sensitive K+ channel-expressing cells in BN relative to SS rats within brain stem sites associated with respiratory chemoreception, such as the nucleus tractus solitarius (NTS), but not within the pre-Bötzinger complex region, nucleus ambiguus or the hypoglossal motor nucleus. Medullary sections (25 μm) from adult male and female BN and SS rats were stained with primary antibodies targeting TASK-1, Kv1.4, or Kir2.3 K+ channels, and the total (Nissl-stained) and K+ channel immunoreactive (-ir) cells counted. For both male and female rats, the numbers of K+ channel-ir cells within the NTS were reduced in the BN compared with SS rats ( P < 0.05), despite equal numbers of total NTS cells. In contrast, we found few differences in the numbers of K+ channel-ir cells among the strains within the nucleus ambiguus, hypoglossal motor nucleus, or pre-Bötzinger complex regions in both male and female rats. However, there were no predicted functional mutations in each of the K+ channels studied comparing genomic sequences among these strains. Thus we conclude that the relatively selective reductions in pH-sensitive K+ channel-expressing cells in the NTS of male and female BN rats may contribute to their severely blunted ventilatory CO2 chemoreflex.


1995 ◽  
Vol 269 (6) ◽  
pp. R1301-R1307
Author(s):  
K. Kato ◽  
H. Yang ◽  
Y. Tache

Mechanisms involved in central thyrotropin-releasing hormone (TRH) analogue RX-77368-induced prevention of gastric lesions were investigated in urethan-anesthetized rats. Gastric lesions were induced by intragastric administration of ethanol (4 ml/kg) and assessed 1 h later by macroscopic visualization using computerized image analysis. RX-77368 (3, 5, and 10 ng) microinjected into the dorsal motor nucleus of the vagus (DMN) decreased ethanol-induced gastric lesions by 79, 68, and 61%, respectively. RX-77368 at 1.5, 15, or 30 ng into the DMN or at 3 or 10 ng into the nucleus of the solitary tract, hypoglossal nucleus, or reticular field was ineffective in preventing mucosal damage. The protective effect of RX-77368 (3 ng into the DMN) was partly inhibited by peripheral injection of indomethacin and completely blocked by atropine, the calcitonin gene-related peptide antagonist, CGRP-(8-37), and NG-nitro-L-arginine methyl ester (L-NAME). L-arginine, but not D-arginine, reversed the effect of L-NAME. RX-77368 (3 ng into the DMN) enhanced gastric prostaglandin E2 (PGE2) release. These data indicate that low doses of TRH analogue act in the DMN to induce gastric protection against ethanol injury through muscarinic-, PGE2-, CGRP-, and nitric oxide-dependent mechanisms.


2001 ◽  
Vol 4 (3) ◽  
pp. 222-236 ◽  
Author(s):  
Jaleh Mansouri ◽  
Ashok Panigrahy ◽  
Susan F. Assmann ◽  
Hannah C. Kinney

Rapid and dramatic changes occur in cardiorespiratory function during early human life. Catecholamines within select brain stem nuclei are implicated in the control of autonomic and respiratory function, including in the nucleus of the solitary tract and the dorsal motor nucleus of X. Animal and adult human studies have shown high binding to α2-adrenergic receptors in these regions. To determine the developmental profile of brainstem α2-adrenergic binding across early human life, we studied brain stems from five fetuses at mid-gestation, three newborns (37–38 postconceptional weeks), and six infants (44–61 postconceptional weeks). We used quantitative tissue receptor autoradiography with [3H]para-aminoclonidine as the radioligand and phentolamine as the displacer. In the fetal group, binding was high (63–93 fmol/mg tissue) in the nucleus of the solitary tract, dorsal motor nucleus of X, locus coeruleus, and reticular formation; it was low (<32 fmol/mg tissue) in the principal inferior olive and basis pontis. Binding decreased in all regions with age: in infancy, the highest binding was in the intermediate range (32–62 fmol/mg tissue) and was localized to the nucleus of the solitary tract and dorsal motor nucleus of X. The most substantial decrease in binding (75%–85%) between the fetal and infant periods occurred in the pontine and medullary reticular formation and hypoglossal nucleus. Binding remained low in the principal inferior olive and basis pontis. The decreases in binding with age remained significant after quench correction. These data suggest that rapid and dramatic changes occur in early human life in the brain stem catecholaminergic system in regions related to cardiorespiratory control.


Sign in / Sign up

Export Citation Format

Share Document