scholarly journals Mechanisms of nasal high flow on ventilation during wakefulness and sleep

2013 ◽  
Vol 114 (8) ◽  
pp. 1058-1065 ◽  
Author(s):  
Toby Mündel ◽  
Sheng Feng ◽  
Stanislav Tatkov ◽  
Hartmut Schneider

Nasal high flow (NHF) has been shown to increase expiratory pressure and reduce respiratory rate but the mechanisms involved remain unclear. Ten healthy participants [age, 22 ± 2 yr; body mass index (BMI), 24 ± 2 kg/m2] were recruited to determine ventilatory responses to NHF of air at 37°C and fully saturated with water. We conducted a randomized, controlled, cross-over study consisting of four separate ∼60-min visits, each 1 wk apart, to determine the effect of NHF on ventilation during wakefulness (NHF at 0, 15, 30, and 45 liters/min) and sleep (NHF at 0, 15, and 30 liters/min). In addition, a nasal cavity model was used to compare pressure/air-flow relationships of NHF and continuous positive airway pressure (CPAP) throughout simulated breathing. During wakefulness, NHF led to an increase in tidal volume from 0.7 ± 0.1 liter to 0.8 ± 0.2, 1.0 ± 0.2, and 1.3 ± 0.2 liters, and a reduction in respiratory rate ( fR) from 16 ± 2 to 13 ± 3, 10 ± 3, and 8 ± 3 breaths/min (baseline to 15, 30, and 45 liters/min NHF, respectively; P < 0.01). In contrast, during sleep, NHF led to a ∼20% fall in minute ventilation due to a decrease in tidal volume and no change in fR. In the nasal cavity model, NHF increased expiratory but decreased inspiratory resistance depending on both the cannula size and the expiratory flow rate. The mechanisms of action for NHF differ from those of CPAP and are sleep/wake-state dependent. NHF may be utilized to increase tidal breathing during wakefulness and to relieve respiratory loads during sleep.

2019 ◽  
Vol 126 (4) ◽  
pp. 863-869 ◽  
Author(s):  
Maximilian Pinkham ◽  
Russel Burgess ◽  
Toby Mündel ◽  
Stanislav Tatkov

Nasal high flow (NHF) is an emerging therapy for respiratory support, but knowledge of the mechanisms and applications is limited. It was previously observed that NHF reduces the tidal volume but does not affect the respiratory rate during sleep. The authors hypothesized that the decrease in tidal volume during NHF is due to a reduction in carbon dioxide (CO2) rebreathing from dead space. In nine healthy males, ventilation was measured during sleep using calibrated respiratory inductance plethysmography (RIP). Carbogen gas mixture was entrained into 30 l/min of NHF to obtain three levels of inspired CO2: 0.04% (room air), 1%, and 3%. NHF with room air reduced tidal volume by 81 ml, SD 25 ( P < 0.0001) from a baseline of 415 ml, SD 114, but did not change respiratory rate; tissue CO2 and O2 remained stable, indicating that gas exchange had been maintained. CO2 entrainment increased tidal volume close to baseline with 1% CO2 and greater than baseline with 3% CO2 by 155 ml, SD 79 ( P = 0.0004), without affecting the respiratory rate. It was calculated that 30 l/min of NHF reduced the rebreathing of CO2 from anatomical dead space by 45%, which is equivalent to the 20% reduction in tidal volume that was observed. The study proves that the reduction in tidal volume in response to NHF during sleep is due to the reduced rebreathing of CO2. Entrainment of CO2 into the NHF can be used to control ventilation during sleep. NEW & NOTEWORTHY The findings in healthy volunteers during sleep show that nasal high flow (NHF) with a rate of 30 l/min reduces the rebreathing of CO2 from anatomical dead space by 45%, resulting in a reduced minute ventilation, while gas exchange is maintained. Entrainment of CO2 into the NHF can be used to control ventilation during sleep.


1995 ◽  
Vol 78 (4) ◽  
pp. 1374-1381 ◽  
Author(s):  
D. Gozal ◽  
J. H. Ben-Ari ◽  
R. M. Harper ◽  
T. G. Keens

In early phases of respiratory disease, patients are more likely to experience intermittent hypercapnia than a continuous increase in PCO2. The effect of intermittent arterial PCO2 elevation on subsequent breathing patterns is unclear. To examine this issue, a series of six ventilatory challenges (CH1-CH6), consisting of 2 min of breathing 5% CO2 in O2, followed by 5 min in room air (RA) were performed in 10 naive healthy subjects (age 12–39 yr). Minute ventilation (VE) increased from 11.9 +/- 1.0 (SE) l/min in RA to 27.6 +/- 3.0 l/min in 5% CO2 (P < 0.0005) in each of the six hypercapnic challenges. Respiratory rate increased from 21.3 +/- 2.6 breaths/min on RA to 29.6 +/- 3.9 breaths/min during CH1 (P < 0.05). However, respiratory rate consistently decreased with successive CO2 challenges (CH6: 21.5 +/- 2.6 breaths/min; P < 0.02). Thus, maintenance of VE was achieved by gradual increases in tidal volume with each of the first four consecutive CO2 challenges (CH1: 1.05 +/- 0.09 liters; CH4: 1.44 +/- 0.13 liters; P < 0.002). Similarly, the ratio of tidal volume to inspiratory time increased from CH1 (1.16 +/- 0.16 l/s) to CH6 (1.57 +/- 0.21 l/s; P < 0.001). These changes in ventilatory strategy were not observed when RA recovery periods were extended to 15 min in five subjects. We conclude that during repeated short hypercapnic challenges similar levels of VE are achieved. However, increased mean inspiratory flows are generated to maintain VE. We speculate that intermittent hypercapnia either modifies central controller gain or induces a long-term modulatory effect to account for the progressive changes in ventilatory components.


1995 ◽  
Vol 79 (1) ◽  
pp. 176-185 ◽  
Author(s):  
V. Jounieaux ◽  
G. Aubert ◽  
M. Dury ◽  
P. Delguste ◽  
D. O. Rodenstein

We have recently observed obstructive apneas during nasal intermittent positive-pressure ventilation (nIPPV) and suggested that they were due to hypocapnia-induced glottic closure. To confirm this hypothesis, we studied seven healthy subjects and submitted them to nIPPV while their glottis was continuously monitored through a fiber-optic bronchoscope. During wakefulness, we measured breath by breath the widest inspiratory angle formed by the vocal cords at the anterior commissure along with several other indexes. Mechanical ventilation was progressively increased up to 30 l/min. In the absence of diaphragmatic activity, increases in delivered minute ventilation resulted in progressive narrowing of the vocal cords, with an increase in inspiratory resistance and a progressive reduction in the percentage of the delivered tidal volume effectively reaching the lungs. Adding CO2 to the inspired gas led to partial widening of the glottis in two of three subjects. Moreover, activation of the diaphragmatic muscle was always associated with a significant inspiratory abduction of the vocal cords. Sporadically, complete adduction of the vocal cords was directly responsible for obstructive laryngeal apneas and cyclic changes in the glottic aperture resulted in waxing and waning of tidal volume. We conclude that in awake humans passive ventilation with nIPPV results in vocal cord adduction that depends partly on hypocapnia, but our results suggest that other factors may also influence glottic width.


2018 ◽  
Vol 51 (5) ◽  
pp. 1702251 ◽  
Author(s):  
Paolo Biselli ◽  
Kathrin Fricke ◽  
Ludger Grote ◽  
Andrew T. Braun ◽  
Jason Kirkness ◽  
...  

Nasal high flow (NHF) reduces minute ventilation and ventilatory loads during sleep but the mechanisms are not clear. We hypothesised NHF reduces ventilation in proportion to physiological but not anatomical dead space.11 subjects (five controls and six chronic obstructive pulmonary disease (COPD) patients) underwent polysomnography with transcutaneous carbon dioxide (CO2) monitoring under a metabolic hood. During stable non-rapid eye movement stage 2 sleep, subjects received NHF (20 L·min−1) intermittently for periods of 5–10 min. We measured CO2 production and calculated dead space ventilation.Controls and COPD patients responded similarly to NHF. NHF reduced minute ventilation (from 5.6±0.4 to 4.8±0.4 L·min−1; p<0.05) and tidal volume (from 0.34±0.03 to 0.3±0.03 L; p<0.05) without a change in energy expenditure, transcutaneous CO2 or alveolar ventilation. There was a significant decrease in dead space ventilation (from 2.5±0.4 to 1.6±0.4 L·min−1; p<0.05), but not in respiratory rate. The reduction in dead space ventilation correlated with baseline physiological dead space fraction (r2=0.36; p<0.05), but not with respiratory rate or anatomical dead space volume.During sleep, NHF decreases minute ventilation due to an overall reduction in dead space ventilation in proportion to the extent of baseline physiological dead space fraction.


2006 ◽  
Vol 100 (3) ◽  
pp. 786-791 ◽  
Author(s):  
Joseph M. Dybas ◽  
Catharine J. Andresen ◽  
Edward S. Schelegle ◽  
Ryan W. McCue ◽  
Natasha N. Callender ◽  
...  

Deep-breath frequency has been shown to increase in spontaneously obstructed asthmatic subjects. Furthermore, deep breaths are known to be regulated by lung rapidly adapting receptors, yet the mechanism by which these receptors are stimulated is unclear. This study tested the hypothesis that deep-breath frequency increases during experimentally induced bronchoconstriction, and the magnitude of the increased deep-breath frequency is dependent on the method by which bronchoconstriction is induced. Nine cynomolgus monkeys ( Macaca fascicularis) were challenged with methacholine (MCh), Ascaris suum (AS), histamine, or an external mechanical resistance. Baseline (BL) and challenge deep-breath frequency were calculated from the number of deep breaths per trial period. Airway resistance (Raw) and tissue compliance (Cti), as well as tidal volume, respiratory rate, and minute ventilation, were analyzed for BL and challenged conditions. Transfer impedance measurements were fit with the DuBois model to determine the respiratory parameters (Raw and Cti). The flow at the airway opening was measured and analyzed on a breath-by-breath basis to obtain the ventilatory parameters (tidal volume, respiratory rate, and minute ventilation). Deep-breath frequency resulting from AS and histamine challenges [0.370 (SD 0.186) and 0.467 breaths/min (SD 0.216), respectively] was significantly increased compared with BL, MCh, or external resistance challenges [0.61 (SD 0.046), 0.156 (SD 0.173), and 0.117 breaths/min (SD 0.082), respectively]. MCh and external resistance challenges resulted in insignificant changes in deep-breath frequency compared with BL. All four modalities produced similar levels of bronchoconstriction, as assessed through changes in Raw and Cti, and had similar effects on the ventilatory parameters except that non-deep-breath tidal volume was decreased in AS and histamine. We propose that increased deep-breath frequency during AS and histamine challenge is the result of increased vascular permeability, which acts to increase rapidly adapting receptor activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paulina M. Getsy ◽  
Sripriya Sundararajan ◽  
Walter J. May ◽  
Graham C. von Schill ◽  
Dylan K. McLaughlin ◽  
...  

AbstractThe roles of endothelial nitric oxide synthase (eNOS) in the ventilatory responses during and after a hypercapnic gas challenge (HCC, 5% CO2, 21% O2, 74% N2) were assessed in freely-moving female and male wild-type (WT) C57BL6 mice and eNOS knock-out (eNOS-/-) mice of C57BL6 background using whole body plethysmography. HCC elicited an array of ventilatory responses that were similar in male and female WT mice, such as increases in breathing frequency (with falls in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives. eNOS-/- male mice had smaller increases in minute ventilation, peak inspiratory flow and inspiratory drive, and smaller decreases in inspiratory time than WT males. Ventilatory responses in female eNOS-/- mice were similar to those in female WT mice. The ventilatory excitatory phase upon return to room-air was similar in both male and female WT mice. However, the post-HCC increases in frequency of breathing (with decreases in inspiratory times), and increases in tidal volume, minute ventilation, inspiratory drive (i.e., tidal volume/inspiratory time) and expiratory drive (i.e., tidal volume/expiratory time), and peak inspiratory and expiratory flows in male eNOS-/- mice were smaller than in male WT mice. In contrast, the post-HCC responses in female eNOS-/- mice were equal to those of the female WT mice. These findings provide the first evidence that the loss of eNOS affects the ventilatory responses during and after HCC in male C57BL6 mice, whereas female C57BL6 mice can compensate for the loss of eNOS, at least in respect to triggering ventilatory responses to HCC.


2002 ◽  
Vol 92 (2) ◽  
pp. 878-887 ◽  
Author(s):  
Richard L. Horner ◽  
Xia Liu ◽  
Harmeet Gill ◽  
Philip Nolan ◽  
Hattie Liu ◽  
...  

The effects of sleep on the ventilatory responses to hypercapnia have been well described in animals and in humans. In contrast, there is little information for genioglossus (GG) responses to a range of CO2 stimuli across all sleep-wake states. Given the notion that sleep, especially rapid eye movement (REM) sleep, may cause greater suppression of muscles with both respiratory and nonrespiratory functions, this study tests the hypothesis that GG activity will be differentially affected by sleep-wake states with major suppression in REM sleep despite excitation by CO2. Seven rats were chronically implanted with electroencephalogram, neck, GG, and diaphragm electrodes, and responses to 0, 1, 3, 5, 7, and 9% CO2 were recorded. Diaphragm activity and respiratory rate increased with CO2 ( P < 0.001) across sleep-wake states with significant increases at 3–5% CO2 compared with 0% CO2 controls ( P < 0.05). Phasic GG activity also increased in hypercapnia but required higher CO2 (7–9%) for significant activation ( P < 0.05). Further studies in 15 urethane-anesthetized rats with the vagi intact ( n = 6) and cut ( n = 9) showed that intact vagi delayed GG recruitment with hypercapnia but did not affect diaphragm responses. In the naturally sleeping rats, we also showed that GG activity was significantly reduced in non-REM and REM sleep ( P < 0.04) and was almost abolished in REM even with stimulation by 9% CO2 (decrease = 80.4% vs. wakefulness). Such major suppression of GG activity in REM, even with significant respiratory stimulation, may explain why obstructive apneas are more common in REM sleep.


2004 ◽  
Vol 97 (4) ◽  
pp. 1401-1407 ◽  
Author(s):  
Masahiko Izumizaki ◽  
Mieczyslaw Pokorski ◽  
Ikuo Homma

We examined the effects of carotid body denervation on ventilatory responses to normoxia (21% O2 in N2 for 240 s), hypoxic hypoxia (10 and 15% O2 in N2 for 90 and 120 s, respectively), and hyperoxic hypercapnia (5% CO2 in O2 for 240 s) in the spontaneously breathing urethane-anesthetized mouse. Respiratory measurements were made with a whole body, single-chamber plethysmograph before and after cutting both carotid sinus nerves. Baseline measurements in air showed that carotid body denervation was accompanied by lower minute ventilation with a reduction in respiratory frequency. On the basis of measurements with an open-circuit system, no significant differences in O2 consumption or CO2 production before and after chemodenervation were found. During both levels of hypoxia, animals with intact sinus nerves had increased respiratory frequency, tidal volume, and minute ventilation; however, after chemodenervation, animals experienced a drop in respiratory frequency and ventilatory depression. Tidal volume responses during 15% hypoxia were similar before and after carotid body denervation; during 10% hypoxia in chemodenervated animals, there was a sudden increase in tidal volume with an increase in the rate of inspiration, suggesting that gasping occurred. During hyperoxic hypercapnia, ventilatory responses were lower with a smaller tidal volume after chemodenervation than before. We conclude that the carotid bodies are essential for maintaining ventilation during eupnea, hypoxia, and hypercapnia in the anesthetized mouse.


Author(s):  
Amelia A. Lowell

The main goal of mechanical ventilation is to unload the respiratory muscles to facilitate oxygenation and ventilation. This is accomplished by providing a minute ventilation (VE) (respiratory rate × tidal volume [VT]) that will result in adequate alveolar ventilation coupled with supplemental oxygen and a mean airway pressure that will result in adequate arterial oxygenation.


1984 ◽  
Vol 56 (4) ◽  
pp. 914-921 ◽  
Author(s):  
E. H. Schlenker

Ventilatory responses of 10 control and 10 dystrophic male hamsters to air, hypercapnia, and hypoxia were evaluated at four ages (40, 70, 100, and 140 days). Tidal volume (VT), frequency (f), minute ventilation (VE) as well as inspiratory and expiratory time of awake animals were measured with a plethysmograph. There was a small increase of VT in both groups with age. Although there was no change of f in the control group with age, there was a progressive decrease in f (means +/- SE: 92 +/- 8, 97 +/- 9, 74.5 +/- 10, and 68 +/- 8 breaths/min) in the dystrophic group. Consequently VE on air decreased in the dystrophic group. Both groups showed similar responses to hypoxia (13 and 10% O2) and hypercapnia (3, 5, and 8% CO2) at 40 days. By 70 days the hypercapnic, but not hypoxic, response of the dystrophic animals was significantly decreased compared with that of the control group (at 8% CO2, VE = 47.4 +/- 4.1 vs. 75.7 +/- 7.6 ml/min, P less than 0.01). At both 100 and 140 days the response of the dystrophic group to CO2 was flat; i.e., the slope VE vs. fractional concentration of inspired CO2 was close to zero, and the hypoxic responses were greatly diminished. Because hamsters increase VE in response to CO2 primarily by increasing VT, the data suggest that dystrophic hamsters are unable to increase VT at a very early age, presumably due to muscle weakness. The normal response of hamsters to hypoxia, which is primarily to increase f, appears to be maintained for a longer time.


Sign in / Sign up

Export Citation Format

Share Document