Predicting metabolic rate across walking speed: one fit for all body sizes?

2013 ◽  
Vol 115 (9) ◽  
pp. 1332-1342 ◽  
Author(s):  
Peter G. Weyand ◽  
Bethany R. Smith ◽  
Nicole S. Schultz ◽  
Lindsay W. Ludlow ◽  
Maurice R. Puyau ◽  
...  

We formulated a “one-size-fits-all” model that predicts the energy requirements of level human walking from height, weight, and walking speed. Our three-component model theorizes that the energy expended per kilogram per stride is independent of stature at mechanically equivalent walking speeds. We measured steady-state rates of oxygen uptake of 78 subjects who spanned a nearly twofold range of statures (1.07–2.11 m) and sevenfold range of body masses (16–112 kg) at treadmill speeds from 0.4 to 1.9 m/s. We tested the size independence of the model by deriving best-fit equations in the form of the model on four stature groups ( n ≥ 15): short, moderately short, moderately tall, and tall. The mean walking metabolic rates predicted by these four independently derived equations for the same set of reference subjects ( n = 16; stature range: 1.30–1.90 m) agreed with one another to within an average of 5.2 ± 3.7% at the four intermediate speeds in our protocol. We next evaluated the model's gross predictive accuracy by dividing our 78 subjects into 39 stature-matched pairs of experimental and validation group subjects. The model best-fit equation derived on the experimental group subjects predicted the walking metabolic rates of the validation group subjects to within an average of 8.1 ± 6.7% ( R2 = 0.90; standard error of estimate = 1.34 ml O2·kg−1·min−1). The predictive error of the American College of Sports Medicine equation (18.0 ± 13.1%), which does not include stature as a predictor, was more than twice as large for the same subject group. We conclude that the energy cost of level human walking can be accurately predicted from height, weight, and walking speed.

2016 ◽  
Vol 120 (5) ◽  
pp. 481-494 ◽  
Author(s):  
Lindsay W. Ludlow ◽  
Peter G. Weyand

Accurate prediction of the metabolic energy that walking requires can inform numerous health, bodily status, and fitness outcomes. We adopted a two-step approach to identifying a concise, generalized equation for predicting level human walking metabolism. Using literature-aggregated values we compared 1) the predictive accuracy of three literature equations: American College of Sports Medicine (ACSM), Pandolf et al., and Height-Weight-Speed (HWS); and 2) the goodness-of-fit possible from one- vs. two-component descriptions of walking metabolism. Literature metabolic rate values ( n = 127; speed range = 0.4 to 1.9 m/s) were aggregated from 25 subject populations ( n = 5-42) whose means spanned a 1.8-fold range of heights and a 4.2-fold range of weights. Population-specific resting metabolic rates (V̇o2rest) were determined using standardized equations. Our first finding was that the ACSM and Pandolf et al. equations underpredicted nearly all 127 literature-aggregated values. Consequently, their standard errors of estimate (SEE) were nearly four times greater than those of the HWS equation (4.51 and 4.39 vs. 1.13 ml O2·kg−1·min−1, respectively). For our second comparison, empirical best-fit relationships for walking metabolism were derived from the data set in one- and two-component forms for three V̇o2-speed model types: linear (∝V1.0), exponential (∝V2.0), and exponential/height (∝V2.0/Ht). We found that the proportion of variance ( R2) accounted for, when averaged across the three model types, was substantially lower for one- vs. two-component versions (0.63 ± 0.1 vs. 0.90 ± 0.03) and the predictive errors were nearly twice as great (SEE = 2.22 vs. 1.21 ml O2·kg−1·min−1). Our final analysis identified the following concise, generalized equation for predicting level human walking metabolism: V̇o2total = V̇o2rest + 3.85 + 5.97·V2/Ht (where V is measured in m/s, Ht in meters, and V̇o2 in ml O2·kg−1·min−1).


2017 ◽  
Vol 4 (11) ◽  
pp. 171673 ◽  
Author(s):  
Michael G. Browne ◽  
Jason R. Franz

Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force ( F P ) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and F P generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their F P according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an F P at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds.


Healthcare ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 674
Author(s):  
Keisuke Itotani ◽  
Kanta Kawahata ◽  
Wakana Takashima ◽  
Wakana Mita ◽  
Hitomi Minematsu ◽  
...  

Physical performance is mainly assessed in terms of gait speed, chair rise capacity, and balance skills, and assessments are often carried out on the lower limbs. Such physical performance is largely influenced by the strength of the quadriceps and hamstrings muscles. Flexibility of the hamstrings is important because quadriceps muscle activity influences the hip flexion angle. Therefore, hamstring flexibility is essential to improve physical performance. In this study, Myofascial Release (MFR) was applied to the hamstrings to evaluate its effects. MFR on the hamstrings was performed on 17 young adults. Physical function and physical performance were measured before, immediately after, and 5 days after the MFR intervention: finger floor distance (FFD), range of motion (ROM) of the straight leg raising test (SLR), standing long jump (SLJ), squat jump (SJ), functional reach test (FRT), comfortable walking speeds (C-walking speed), and maximum walking speeds (M-walking speed). The results of the analysis show a significant increase in FFD (−2.6 ± 8.9 vs. 0.4 ± 9.4 vs. 2.4 ± 8.9, p < 0.01), SLJ (185.6 ± 44.5 vs. 185.0 ± 41.8 vs. 196.6 ± 40.1, p < 0.01), and M-walking speed (2.9 ± 0.6 vs. 3.0 ± 0.6 vs. 3.3 ± 0.6, p < 0.01). This study has shown that MFR for hamstrings not only improves flexibility but also increases M-walking speed and physical performance of the SLJ. As MFR is safe and does not involve joint movement, it may be useful for maintaining and improving performance and flexibility during inactivity and for stretching before exercise.


Author(s):  
Brendan J. Russo ◽  
Emmanuel James ◽  
Cristopher Y. Aguilar ◽  
Edward J. Smaglik

In the past two decades, cell phone and smartphone use in the United States has increased substantially. Although mobile phones provide a convenient way for people to communicate, the distraction caused by the use of these devices has led to unintended traffic safety and operational consequences. Although it is well recognized that distracted driving is extremely dangerous for all road users (including pedestrians), the potential impacts of distracted walking have not been as comprehensively studied. Although practitioners should design facilities with the safety, efficiency, and comfort of pedestrians in mind, it is still important to investigate certain pedestrian behaviors at existing facilities to minimize the risk of pedestrian–vehicle crashes, and to reduce behaviors that may unnecessarily increase delay at signalized intersections. To gain new insights into factors associated with distracted walking, pedestrian violations, and walking speed, 3,038 pedestrians were observed across four signalized intersections in New York and Arizona using high-definition video cameras. The video data were reduced and summarized, and an ordinary least squares (OLS) regression model was estimated to analyze factors affecting walking speeds. In addition, binary logit models were estimated to analyze both pedestrian distraction and pedestrian violations. Ultimately, several site- and pedestrian-specific variables were found to be significantly associated with pedestrian distraction, violation behavior, and walking speeds. The results provide important information for researchers, practitioners, and legislators, and may be useful in planning strategies to reduce or mitigate the impacts of pedestrian behavior that may be considered unsafe or potentially inefficient.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Naresh C. Rao ◽  
Hallie Zwibel ◽  
Jenny Berezanskaya ◽  
Paul Pena ◽  
Min-Kyung Jung

Abstract Context Comprehensive sports medicine care goes beyond the treatment of injuries resulting from athletic activities. Ultimately, it is a competence that includes knowledge in physical therapy, training, nutrition, coaching, motivation, competition, mentoring, psychology, and spirituality that allows the physician and patient to collaborate on promoting the patient’s health goals. The current literature demonstrates a lack of knowledge in the Osteopathic Primary Care Sports Medicine Model’s effectiveness in performance. Objectives To determine whether a comprehensive osteopathic primary care sports medicine approach can improve performance and health outcomes in collegiate athletes. Methods A randomized controlled trial commenced just prior to the start of the lacrosse season and concluded at the end of the season. All the New York Institute of Technology (NYIT) collegiate lacrosse players were educated first in a 1-day seminar of the core competencies, and all participants had access to ask questions on their own volition. Then they were randomized into two groups, either the experimental group receiving the direct osteopathic primary care sports medicine intervention (n=18) or the control group not having active intervention (n=19). Also, the overall team winning percentage for that season was computed and compared to that for the previous years and the following year. Participants were assessed before and after the intervention with the Patient Health Questionnaire (PHQ-9), the 36-Item Short Form Survey (SF-36), custom Osteopathic Primary Care Sports Medicine questionnaire, and body fat composition, and their changes were compared between the experimental group and the control group. Collected data were analyzed using the repeated-measures analysis of variance. Results Thirty-seven participants were enrolled in the study. After 14 participants were excluded due to being lost to follow-up, 23 athlete records were analyzed. The winning percentage of the team was highest during the year of the study period time than in the 3 previous years and the following year. The test group did not have any statistically significant change in the PHQ-9, SF-36, custom Osteopathic Primary Care Sports Medicine questionnaire, as well as in body fat composition. Conclusions When used during a collegiate lacrosse season, this Osteopathic Primary Care Sports Medicine intervention did not significantly improve health outcomes. This preliminary study, despite its limitations in compliance and study population size, did demonstrate improvement in overall team performance when comparing the intervention sport season to other seasons but was not statistically significantly. Therefore, further studies are warranted to improve the understanding in this approach to athlete health outcomes and performance.


Author(s):  
Luis Izquierdo ◽  
Maria A Henriquez ◽  
David Dañin

ABSTRACT Purpose To compare corneal elevation values in normal eyes, forme fruste keratoconus (FFKC) and different stages of keratoconus using Scheimpflug imaging. Materials and methods This prospective, comparative study included 267 eyes (107 normal eyes, 21 FFKC and 139 keratoconus). Keratoconic eyes were divided into four groups according to keratometry values. Maximum posterior elevation (PE) above the (best fit sphere (BFS) at the central 5 mm were measured using the Pentacam (Oculus Optikgeräte GmbH). Receiver operating characteristic curves were used to determine the test's overall predictive accuracy and to identify optimal cutoff points to discriminate between the groups. Results PE had the smallest values in normal eyes and increased in FFKC and each progressive stage of keratoconus. Mean PE was 9.98 ± 5.33 µm in normal eyes, 18.09 ± 9.23 µm in FFKC and 24.97 µm ± 15.89, 37.82 ± 18.64, 46.82 ± 21.41 and 66.07 ± 39.09, in keratoconus stage I, II, III and IV respectively. Conclusion Posterior elevation values increased according to the severity of keratoconus disease. PE can be used as indicator of keratoconus progression. How to cite this article Henriquez MA, Izquierdo L Jr, Dañin D. Corneal Elevation Values in Normal Eyes, forme fruste Keratoconus and Keratoconus at Different Stages Measured by Scheimpflug Imaging. Int J Kerat Ect Cor Dis 2014;3(1):36-39.


Motor Control ◽  
2020 ◽  
pp. 1-18
Author(s):  
Manuel J. Escalona ◽  
Daniel Bourbonnais ◽  
Michel Goyette ◽  
Damien Le Flem ◽  
Cyril Duclos ◽  
...  

The effects of walking speeds on lower-extremity muscle synergies (MSs) were investigated among 20 adults who walked 20 m at SLOW (0.6 ± 0.2 m/s), natural (NAT; 1.4 ± 0.1 m/s), and FAST (1.9 ± 0.1 m/s) speeds. Surface electromyography of eight lower-extremity muscles was recorded before extracting MSs using a nonnegative matrix factorization algorithm. Increasing walking speed tended to merge MSs associated with weight acceptance and limb deceleration, whereas reducing walking speed does not change the number and composition of MSs. Varying gait speed, particularly decreasing speed, may represent a gait training strategy needing additional attention given its effects on MSs.


2019 ◽  
Vol 90 (8) ◽  
pp. 913-919 ◽  
Author(s):  
Ryan Roemmich ◽  
Jaimie A Roper ◽  
Robert S Eisinger ◽  
Jackson N Cagle ◽  
Lauren Maine ◽  
...  

ObjectiveTo investigate the effects of unilateral thalamic deep brain stimulation (DBS) on walking in persons with medication-refractory essential tremor (ET).MethodsWe performed laboratory-based gait analyses on 24 persons with medication-refractory ET before and after unilateral thalamic DBS implantation. Normal and tandem walking parameters were analysed across sessions (PRE-DBS/DBS OFF/DBS ON) by repeated measures analyses of variance. Pearson’s correlations assessed whether changes in walking after DBS were global (ie, related across gait parameters). Baseline characteristics, lead locations and stimulation parameters were analysed as possible contributors to gait effects.ResultsDBS minimally affected gait at the cohort level. However, 25% of participants experienced clinically meaningful gait worsening. Walking speed decreased by >30% in two participants and by >10% in four others. Decreased walking speed correlated with increased gait variability, indicating global gait worsening in affected participants. The worsening persisted even after the stimulation was turned off. Participants with worse baseline tandem walking performance may be more likely to experience post-DBS gait worsening; the percentage of tandem missteps at baseline was nearly three times higher and tandem walking speeds were approximately 30% slower in participants who experienced gait worsening. However, these differences in tandem walking in persons with gait worsening as compared with those without worsening were not statistically significant. Lead locations and stimulation parameters were similar in participants with and without gait worsening.ConclusionGlobal gait worsening occurred in 25% of participants with unilateral DBS for medication-refractory ET. The effect was present on and off stimulation, likely indicating a microlesion effect.


Sign in / Sign up

Export Citation Format

Share Document