scholarly journals Prior moderate and heavy exercise accelerate oxygen uptake and cardiac output kinetics in endurance athletes

2009 ◽  
Vol 106 (5) ◽  
pp. 1553-1563 ◽  
Author(s):  
Azmy Faisal ◽  
Keith R. Beavers ◽  
Andrew D. Robertson ◽  
Richard L. Hughson

Cardiorespiratory interactions at the onset of dynamic cycling exercise are modified by warm-up exercises. We tested the hypotheses that oxygen uptake (V̇o2) and cardiac output (Q̇) kinetics would be accelerated at the onset of heavy and moderate cycling exercise by warm-up. Nine male endurance athletes (peak V̇o2: 60.5 ± 3.2 ml·min−1·kg−1) performed multiple rides of two different 36-min cycling protocols, involving 6-min bouts at moderate and heavy intensities. Breath-by-breath V̇o2 and beat-by-beat stroke volume (SV) and Q̇, estimated by Modelflow from the finger pulse, were measured simultaneously with kinetics quantified from the phase II time constant (τ2). One novel finding was that both moderate (M) and heavy (H) warm-up bouts accelerated phase II V̇o2 kinetics during a subsequent bout of heavy exercise (τ2: after M = 22.5 ± 2.7 s, after H = 22.1 ± 2.9 vs. 26.2 ± 3.2 s; P < 0.01). Q̇ kinetics in heavy exercise were accelerated by both warm-up intensities (τ2: M = 22.0 ± 4.1 s, H = 23.8 ± 5.6 s vs. 27.4 ± 7.2 s; P < 0.05). During moderate exercise, prior heavy-intensity warm-up (one or two bouts) accelerated V̇o2 kinetics and elevated Q̇ at exercise onset, with no changes in Q̇ kinetics. A second novel finding was a significant overshoot in the estimate of SV from Modelflow in the first minutes of each moderate and heavy exercise bout. These findings suggest that the acceleration of V̇o2 kinetics during heavy exercise was enabled by the acceleration of Q̇ kinetics, and that rapid increases in Q̇ at the onset of moderate and heavy exercise might result, in part, from an overshoot of SV.

2010 ◽  
Vol 109 (2) ◽  
pp. 491-500 ◽  
Author(s):  
Alan R. Barker ◽  
Andrew M. Jones ◽  
Neil Armstrong

The present study examined the effect of priming exercise on O2 uptake (V̇o2) kinetics during subsequent very heavy exercise in eight 9- to 13-yr-old boys. We hypothesised that priming exercise would 1) elevate muscle O2 delivery prior to the subsequent bout of very heavy exercise, 2) have no effect on the phase II V̇o2 τ, 3) elevate the phase II V̇o2 total amplitude, and 4) reduce the magnitude of the V̇o2 slow component. Each participant completed repeat 6-min bouts of very heavy-intensity cycling exercise separated by 6 min of light pedaling. During the tests V̇o2, muscle oxygenation (near infrared spectroscopy), and cardiac output (Q̇) (thoracic impedance) were determined. Priming exercise increased baseline muscle oxygenation and elevated Q̇ at baseline and throughout the second exercise bout. The phase II V̇o2 τ was not altered by priming exercise ( bout 1: 22 ± 7 s vs. bout 2: 20 ± 4 s; P = 0.30). However, the time constant describing the entire V̇o2 response from start to end of exercise was accelerated ( bout 1: 43 ± 8 s vs. bout 2: 36 ± 5 s; P = 0.002) due to an increased total phase II V̇o2 amplitude ( bout 1: 1.73 ± 0.33 l/min vs. bout 2: 1.80 ± 0.59 l/min; P = 0.002) and a reduced V̇o2 slow component amplitude ( bout 1: 0.18 ± 0.08 l/min vs. bout 2: 0.12 ± 0.09 l/min; P = 0.048). These results suggest that phase II V̇o2 kinetics in young boys is principally limited by intrinsic muscle metabolic factors, whereas the V̇o2 total phase II and slow component amplitudes may be O2 delivery sensitive.


2000 ◽  
Vol 89 (4) ◽  
pp. 1387-1396 ◽  
Author(s):  
Mark Burnley ◽  
Andrew M. Jones ◽  
Helen Carter ◽  
Jonathan H. Doust

We tested the hypothesis that heavy-exercise phase II oxygen uptake (V˙o 2) kinetics could be speeded by prior heavy exercise. Ten subjects performed four protocols involving 6-min exercise bouts on a cycle ergometer separated by 6 min of recovery: 1) moderate followed by moderate exercise; 2) moderate followed by heavy exercise; 3) heavy followed by moderate exercise; and 4) heavy followed by heavy exercise. The V˙o 2 responses were modeled using two (moderate exercise) or three (heavy exercise) independent exponential terms. Neither moderate- nor heavy-intensity exercise had an effect on the V˙o 2 kinetic response to subsequent moderate exercise. Although heavy-intensity exercise significantly reduced the mean response time in the second heavy exercise bout (from 65.2 ± 4.1 to 47.0 ± 3.1 s; P < 0.05), it had no significant effect on either the amplitude or the time constant (from 23.9 ± 1.9 to 25.3 ± 2.9 s) of theV˙o 2 response in phase II. Instead, this “speeding” was due to a significant reduction in the amplitude of the V˙o 2 slow component. These results suggest phase II V˙o 2 kinetics are not speeded by prior heavy exercise.


Author(s):  
Alan R Barker ◽  
Neil Armstrong

The pulmonary oxygen uptake (pV̇O2) kinetic response to exercise provides valuable non-invasive insight into the control of oxidative phosphorylation and determinants of exercise tolerance in children and adolescents. Few methodologically robust studies have investigated pV̇O2 kinetics in children and adolescents, but age- and sex-related differences have been identified. There is a clear age-related slowing of phase II pV̇O2 kinetics during heavy and very heavy exercise, with a trend showing during moderate intensity exercise. During heavy and very heavy exercise the oxygen cost is higher for phase II and the pV̇O2 component is truncated in children. Sex-related differences occur during heavy, but not moderate, intensity exercise, with boys having faster phase II pV̇O2 kinetics and a smaller pV̇O2 slow component compared to girls. The mechanisms underlying these differences are likely related to changes in phosphate feedback controllers of oxidative phosphorylation, muscle oxygen delivery, and/or muscle fibre recruitment strategies.


2017 ◽  
Vol 42 (10) ◽  
pp. 1036-1043 ◽  
Author(s):  
Dylan T. Dahlquist ◽  
Trent Stellingwerff ◽  
Brad P. Dieter ◽  
Donald C. McKenzie ◽  
Michael S. Koehle

Iron deficiency has ergolytic effects on athletic performance. Exercise-induced inflammation impedes iron absorption in the digestive tract by upregulating the expression of the iron regulatory protein, hepcidin. Limited research indicates the potential of specific macro- and micronutrients on blunting exercise-induced hepcidin. Therefore, we investigated the effects of postexercise supplementation with protein and carbohydrate (CHO) and vitamins D3 and K2 on the postexercise hepcidin response. Ten highly trained male cyclists (age: 26.9 ± 6.4 years; maximal oxygen uptake: 67.4 ± 4.4 mL·kg–1·min–1 completed 4 cycling sessions in a randomized, placebo-controlled, single-blinded, triple-crossover study. Experimental days consisted of an 8-min warm-up at 50% power output at maximal oxygen uptake, followed by 8 × 3-min intervals at 85% power output at maximal oxygen uptake with 1.5 min at 60% power output at maximal oxygen uptake between each interval. Blood samples were collected pre- and postexercise, and at 3 h postexercise. Three different drinks consisting of CHO (75 g) and protein (25 g) with (VPRO) or without (PRO) vitamins D3 (5000 IU) and K2 (1000 μg), or a zero-calorie control drink (PLA) were consumed immediately after the postexercise blood sample. Results showed that the postexercise drinks had no significant (p ≥ 0.05) effect on any biomarker measured. There was a significant (p < 0.05) increase in hepcidin and interleukin-6 following intense cycling intervals in the participants. Hepcidin increased significantly (p < 0.05) from baseline (nmol·L–1: 9.94 ± 8.93, 14.18 ± 14.90, 10.44 ± 14.62) to 3 h postexercise (nmol·L–1: 22.27 ± 13.41, 25.44 ± 11.91, 22.57 ± 15.57) in VPRO, PRO, and PLA, respectively. Contrary to our hypothesis, the drink compositions used did not blunt the postexercise hepcidin response in highly trained athletes.


2003 ◽  
Vol 28 (2) ◽  
pp. 283-298 ◽  
Author(s):  
Stéphane Perrey ◽  
Jodie Scott ◽  
Laurent Mourot ◽  
Jean-Denis Rouillon

The purpose of the present study was to assess the relationship between the rapidity of increased oxygen uptake [Formula: see text] and increased cardiac output (CO) during heavy exercise. Six subjects performed repeated bouts on a cycle ergometer above the ventilatory threshold (∼80% of peak [Formula: see text]) separated by 10-min recovery cycling at 35% peak [Formula: see text]. [Formula: see text] was determined breath-by-breath and CO was determined continuously by impedance cardiography. CO and [Formula: see text] values were significantly higher during the 2-min period preceding the second bout. The overall responses for [Formula: see text] and CO were significantly related and were faster during the second bout. Prior heavy exercise resulted in a significant increase in the amplitude of the fast component of [Formula: see text] with no change in the time constant and a decrease in the slow component. Under these circumstances, the amplitude of the fast component was more sensitive to prior heavy exercise than was the associated time constant. Key words: impedance cardiography, exercise transitions, cardiac output, prior exercise


2018 ◽  
Vol 1 (3) ◽  
pp. 122-129
Author(s):  
Joseph M. Stock ◽  
Ryan T. Pohlig ◽  
Matthew J. Botieri ◽  
David G. Edwards ◽  
Gregory M. Dominick

Purpose: Consumer-grade wrist-worn activity monitors frequently include photoplethysmography (PPG) sensors for estimating heart rate (HR). The Fitbit Charge HR is marketed specifically for tracking fitness; therefore, HR accuracy is critical, especially during exercise. This study examined HR equivalency of the Fitbit Charge HR during continuous aerobic exercise. Method: Participants (N = 19) concurrently wore a Polar H1 and Fitbit Charge HR during a measurement visit that included seated rest (5 minutes), warm-up (5 minutes), continuous treadmill exercise (30 minutes), and cool-down (5–10 minutes). Mean HR differences were examined by protocol phase, total activity (i.e., warm-up, exercise, and cool-down combined), and the first, middle, and last 5 minutes of continuous exercise. Mean absolute percent error (MAPE), Bland-Altman plots, and 95% equivalence testing explained overall and individual HR agreement between devices. Results: The Fitbit Charge HR significantly underestimated HR for all measurement phases (all p ≤ .01) except cool-down (p > .33). HR agreement was notably weaker during warm-up (r = 0.66, d = 0.57) and differences were greatest for the first 5 minutes compared to the middle and end of exercise (6.94±2.16 beats per minute [bpm] vs. 1.76±0.59 bpm, and 1.74±0.58 bpm), F = 4.87, p = .04). Mean exercise HRs were equivalent between devices (±2.69 bpm, 95% CI: 1.41–3.97 bpm); MAPE was 1.96%. Conclusion: The Fitbit Charge HR is relatively accurate for measuring HR during continuous aerobic exercise. Whereas the accuracy of PPG-based HR appears limited at exercise onset, agreement improves throughout the exercise bout and HR differences are negligible.


2012 ◽  
Vol 303 (8) ◽  
pp. R791-R798 ◽  
Author(s):  
Melitta A. McNarry ◽  
Michael I. C. Kingsley ◽  
Michael J. Lewis

It is unclear whether pulmonary oxygen uptake (V̇o2) kinetics demonstrate linear, first-order behavior during supra gas exchange threshold exercise. Resolution of this issue is pertinent to the elucidation of the factors regulating oxygen uptake (V̇o2) kinetics, with oxygen availability and utilization proposed as putative mediators. To reexamine this issue with the advantage of a relatively large sample size, 50 young (24 ± 4 yr) and 15 late middle-aged (54 ± 3 yr) participants completed repeated bouts of moderate and heavy exercise. Pulmonary gas exchange, heart rate (HR), and cardiac output (Q̇) variables were measured throughout. The phase II τ was slower during heavy exercise in both young (moderate: 22 ± 9; heavy: 29 ± 9 s; P ≤ 0.001) and middle-aged (moderate: 22 ± 9; heavy: 30 ± 8 s; P ≤ 0.001) individuals. The HR τ was slower during heavy exercise in young (moderate: 33 ± 10; heavy: 44 ± 15 s; P ≤ 0.05) and middle-aged (moderate: 30 ± 12; heavy: 50 ± 20 s; P ≤ 0.05) participants, and the Q̇ τ showed a similar trend (young moderate: 21 ± 13; heavy: 28 ± 16 s; middle-aged moderate: 32 ± 13; heavy: 40 ± 15 s; P ≥ 0.05). There were no differences in primary component V̇o2 kinetics between age groups, but the middle-aged group had a significantly reduced V̇o2 slow component amplitude in both absolute (young: 0.25 ± 0.09; middle-aged: 0.11 ± 0.06 l/min; P ≤ 0.05) and relative terms (young: 15 ± 10; middle-aged: 9 ± 4%; P ≤ 0.05). Thus V̇o2 kinetics do not demonstrate dynamic linearity during heavy intensity exercise. Speculatively, the slower phase II τ during heavy exercise might be attributable to reduced oxygen availability. Finally, the primary and slow components of V̇o2 kinetics appear to be differentially influenced by middle age.


2004 ◽  
Vol 29 (1) ◽  
pp. 32-44 ◽  
Author(s):  
Christophe Cleuziou ◽  
Stéphane Perrey ◽  
Fabio Borrani ◽  
Anne Marie Lecoq ◽  
Robin Candau ◽  
...  

Inconsistencies about dynamic asymmetry between the on- and off-transient responses in [Formula: see text] are found in the literature. Therefore the purpose of this study was to examine [Formula: see text]on-and off-transients during moderate- and heavy-intensity cycling exercise in trained subjects. Ten men underwent an initial incremental test for the estimation of ventilatory threshold (VT) and, on different days, two bouts of square-wave exercise at moderate (< VT) and heavy (> VT) intensities. [Formula: see text] kinetics in exercise and recovery were better described by a single exponential model (< VT), or by a double exponential with two time delays (> VT). For moderate exercise, we found a symmetry of [Formula: see text] kinetics between the on- and off-transients (i.e., fundamental component), consistent with a system manifesting linear control dynamics. For heavy exercise, a slow component superimposed on the fundamental phase was expressed in both the exercise and recovery, with similar parameter estimates. But the on-transient values of the time constant were appreciably faster than the associated off-transient, and independent of the work rate imposed (< VT and > VT). Our results do not support a dynamically linear system model of [Formula: see text] during cycling exercise in the heavy-intensity domain. Key words: oxygen uptake kinetics, on- and off-transients, slow component


1995 ◽  
Vol 79 (3) ◽  
pp. 720-725 ◽  
Author(s):  
D. P. Leijssen ◽  
W. H. Saris ◽  
A. E. Jeukendrup ◽  
A. J. Wagenmakers

The present study examined the oxidation of exogenous galactose or glucose during prolonged submaximal cycling exercise. Eight highly trained volunteers exercised on two occasions on a cycle ergometer at 65% of maximal workload for 120 min, followed by a 60-min rest period and a second exercise bout of 30 min at 60% maximal workload. At random, subjects ingested a 8% galactose solution to which an [1–13C]galactose tracer was added or a 8% glucose solution to which an [U-13C]glucose tracer was added. Drinks were provided at the end of the warm-up period (8 ml/kg) and every 15 min (2 ml/kg) during the first 120 min of the test. Blood and breath samples were collected every 30 and 15 min, respectively, during the test. The exogenous carbohydrate (CHO) oxidation was calculated from the 13CO2/12CO2 ratio and CO2 production of the expired air. Peak exogenous CHO oxidation during exercise for galactose and glucose was 0.41 +/- 0.03 and 0.85 +/- 0.04 g/min, respectively. Total CHO and fat oxidation were not significantly different between the treatments. Forty-six percent of the ingested glucose was oxidized, whereas only 21% of the ingested galactose was oxidized. As a consequence, more endogenous CHO was utilized with galactose than with glucose (124.4 +/- 6.7 and 100.1 +/- 3.6 g, respectively). These results indicate that the oxidation rate of orally ingested galactose is maximally approximately 50% of the oxidation rate of a comparable amount of orally ingested glucose during 120 min of exercise.


Sign in / Sign up

Export Citation Format

Share Document