Gaze locations affect explicit process but not implicit process during visuomotor adaptation

2015 ◽  
Vol 113 (1) ◽  
pp. 88-99 ◽  
Author(s):  
Miya K. Rand ◽  
Sebastian Rentsch

The role of vision in implicit and explicit processes involved in adaptation to novel visuomotor transformations is not well-understood. We manipulated subjects' gaze locations through instructions during a visuomotor rotation task that established a conflict between implicit and explicit processes. Subjects were informed of a rotated visual feedback (45° counterclockwise from the desired target) and instructed to counteract it by using an explicit aiming strategy to the neighboring target (45° clockwise from the target). Simultaneously, they were instructed to gaze at either the desired target (target-gaze group), the neighboring target (hand-target-gaze group), or anywhere (free-gaze group) during aiming. After initial elimination of behavioral errors caused by strategic aiming, the subjects gradually overcompensated the rotation in the early practice, thereby increasing behavioral errors (i.e., a drift). This was caused by an implicit adaptation overriding the explicit strategy. Notably, prescribed gaze locations did not affect this implicit adaptation. In the late practice, the target-gaze and free-gaze groups reduced the drift, whereas the hand-target-gaze group did not. Furthermore, the free-gaze group changed gaze locations for strategic aiming through practice from the neighboring target to the desired target. The onset of this change was correlated with the onset of the drift reduction. These results suggest that gaze locations critically affect explicit adjustments of aiming directions to reduce the drift by taking into account the implicit adaptation that is occurring in parallel. Taken together, spatial eye-hand coordination that ties the gaze and the reach target influences the explicit process but not the implicit process.

1994 ◽  
Vol 79 (1) ◽  
pp. 163-184 ◽  
Author(s):  
Jill H. Rathus ◽  
Arthur S. Reber ◽  
Louis Manza ◽  
Michael Kushner

Two experiments using a standard artificial grammar paradigm were conducted to examine the role of affective states, specifically anxiety and depression, on implicit learning. The main purpose was to broaden the range of human functioning explored through the application of the robustness principle in the evolutionary framework recently developed by Reber which predicts that cognitive processes which rely upon unconscious, implicit processes should be less affected by affective states than those which rely upon conscious, explicit processes. In Study 1 ( N = 60), high test anxiety was associated with performance deficits in the explicit components of the task; no differences were found in the implicit phases of the task. In Study 2 ( N = 160), varying levels of subclinical depression were unrelated to both implicit and explicit functioning. The contrasting findings of the two studies are discussed in terms of the differential cognitive effects and adaptive implications of these two affective states.


Author(s):  
Robert C. Mathews ◽  
Ray R. Buss ◽  
William B. Stanley ◽  
Fredda Blanchard-Fields ◽  
et al

2020 ◽  
Author(s):  
Santiago Muñoz-Moldes ◽  
Axel Cleeremans

Neurofeedback allows humans to self-regulate neural activity in specific brain regions and is considered a promising tool for psychiatric interventions. Recently, methods have been developed to use neurofeedback implicitly, prompting a theoretical debate on the role of awareness in neurofeedback learning. We offer a critical review of the role of awareness in neurofeedback learning, with a special focus on recently developed neurofeedback paradigms. We detail differences in instructions and propose a fine-grained categorization of tasks based on the degree of involvement of explicit and implicit processes. Finally, we review the methods used to measure awareness in neurofeedback and propose new candidate measures. We conclude that explicit processes cannot be eschewed in most current implicit tasks that have explicit goals, and suggest ways in which awareness could be better measured in the future. Investigating awareness during learning will help understand the learning mechanisms underlying neurofeedback learning and will help shape future tasks.


2018 ◽  
Vol 119 (6) ◽  
pp. 2241-2255 ◽  
Author(s):  
Peter Holland ◽  
Olivier Codol ◽  
Joseph M. Galea

Despite increasing interest in the role of reward in motor learning, the underlying mechanisms remain ill defined. In particular, the contribution of explicit processes to reward-based motor learning is unclear. To address this, we examined subjects’ ( n = 30) ability to learn to compensate for a gradually introduced 25° visuomotor rotation with only reward-based feedback (binary success/failure). Only two-thirds of subjects ( n = 20) were successful at the maximum angle. The remaining subjects initially followed the rotation but after a variable number of trials began to reach at an insufficiently large angle and subsequently returned to near-baseline performance ( n = 10). Furthermore, those who were successful accomplished this via a large explicit component, evidenced by a reduction in reach angle when they were asked to remove any strategy they employed. However, both groups displayed a small degree of remaining retention even after the removal of this explicit component. All subjects made greater and more variable changes in reach angle after incorrect (unrewarded) trials. However, subjects who failed to learn showed decreased sensitivity to errors, even in the initial period in which they followed the rotation, a pattern previously found in parkinsonian patients. In a second experiment, the addition of a secondary mental rotation task completely abolished learning ( n = 10), while a control group replicated the results of the first experiment ( n = 10). These results emphasize a pivotal role of explicit processes during reinforcement-based motor learning, and the susceptibility of this form of learning to disruption has important implications for its potential therapeutic benefits. NEW & NOTEWORTHY We demonstrate that learning a visuomotor rotation with only reward-based feedback is principally accomplished via the development of a large explicit component. Furthermore, this form of learning is susceptible to disruption with a secondary task. The results suggest that future experiments utilizing reward-based feedback should aim to dissect the roles of implicit and explicit reinforcement learning systems. Therapeutic motor learning approaches based on reward should be aware of the sensitivity to disruption.


2011 ◽  
Vol 106 (4) ◽  
pp. 2078-2085 ◽  
Author(s):  
Herbert Heuer ◽  
Mathias Hegele

We examined the generalization of adjustment to a visuomotor rotation across the workspace in younger and older adults. Participants practiced in the right workspace with a single target direction and were tested in both the right and left workspace with eight different target directions. A set of tests served to identify implicit and explicit components of adjustment. Explicit, but not implicit, components were stronger at younger than at older adult age. Explicit components generalized across all target directions, whereas implicit components were restricted to the target direction during practice and clockwise adjacent ones. Generalization to the contralateral workspace was found only for explicit components of adjustment. These findings expand the list of functional differences between implicit and explicit components of adjustment to visuomotor transformations.


2021 ◽  
Author(s):  
Elinor Tzvi ◽  
Sebastian Loens ◽  
Opher Donchin

AbstractThe incredible capability of the brain to quickly alter performance in response to ever-changing environment is rooted in the process of adaptation. The core aspect of adaptation is to fit an existing motor program to altered conditions. Adaptation to a visuomotor rotation or an external force has been well established as tools to study the mechanisms underlying sensorimotor adaptation. In this mini-review, we summarize recent findings from the field of visuomotor adaptation. We focus on the idea that the cerebellum plays a central role in the process of visuomotor adaptation and that interactions with cortical structures, in particular, the premotor cortex and the parietal cortex, may be crucial for this process. To this end, we cover a range of methodologies used in the literature that link cerebellar functions and visuomotor adaptation; behavioral studies in cerebellar lesion patients, neuroimaging and non-invasive stimulation approaches. The mini-review is organized as follows: first, we provide evidence that sensory prediction errors (SPE) in visuomotor adaptation rely on the cerebellum based on behavioral studies in cerebellar patients. Second, we summarize structural and functional imaging studies that provide insight into spatial localization as well as visuomotor adaptation dynamics in the cerebellum. Third, we discuss premotor — cerebellar interactions and how these may underlie visuomotor adaptation. And finally, we provide evidence from transcranial direct current and magnetic stimulation studies that link cerebellar activity, beyond correlational relationships, to visuomotor adaptation .


2020 ◽  
Vol 1 ◽  
Author(s):  
Sarah H. E. M. Voets ◽  
Muriel T. N. Panouilleres ◽  
Ned Jenkinson

AbstractMotor adaptation is a process by which the brain gradually reduces error induced by a predictable change in the environment, e.g., pointing while wearing prism glasses. It is thought to occur via largely implicit processes, though explicit strategies are also thought to contribute. Research suggests a role of the cerebellum in the implicit aspects of motor adaptation. Using non-invasive brain stimulation, we sought to investigate the involvement of the cerebellum in implicit motor adaptation in healthy participants. Inhibition of the cerebellum was attained through repetitive transcranial magnetic stimulation (rTMS), after which participants performed a visuomotor-rotation task while using an explicit strategy. Adaptation and aftereffects of the TMS group showed no difference in behaviour compared to a Sham stimulation group, therefore this study did not provide any further evidence of a specific role of the cerebellum in implicit motor adaptation. However, our behavioral findings replicate those in the seminal study by Mazzoni and Krakauer (2006).


2018 ◽  
Author(s):  
Kangwoo Lee ◽  
Youngmin Oh ◽  
Jun Izawa ◽  
Nicolas Schweighofer

AbstractSensory prediction errors are thought to update memories in motor 1 adaptation, but the role of performance errors is largely unknown. To dissociate these errors, we manipulated visual feedback during fast shooting movements under visuomotor rotation. Participants were instructed to strategically correct for performance errors by shooting to a neighboring target in one of four conditions: following the movement onset, the main target, the neighboring target, both targets, or none of the targets disappeared. Participants in all conditions experienced a drift away from the main target following the strategy. In conditions where the main target was shown, participants often tried to minimize performance errors caused by the drift by generating corrective movements. However, despite differences in performance during adaptation between conditions, memory decay in a delayed washout block was indistinguishable between conditions. Our results thus suggest that, in visuomotor adaptation, sensory predictions errors, but not performance errors, update the slow, temporally stable, component of motor memory.


Author(s):  
Gefen Dawidowicz ◽  
Yuval Shaine ◽  
Firas Mawase

Acquisition of multiple motor skills without interference is a remarkable ability in daily life. During adaptation to opposing perturbations, a common paradigm to study this ability, each perturbation can be successfully learned when a contextual follow-through movement is associated with the direction of the perturbation. It is still unclear, however, to what extent this learning engages the cognitive explicit process and the implicit process. Here, we untangled the individual contributions of the explicit and implicit components while participants learned opposing visuomotor perturbations, with a second unperturbed follow-through movement. In Exp. 1 we replicated previous adaptation results and showed that follow-through movements also allow learning for opposing visuomotor rotations. For one group of participants in Exp. 2 we isolated strategic explicit learning, while for another group we isolated the implicit component. Our data showed that opposing perturbations could be fully learned by explicit strategies; but when strategy was restricted, distinct implicit processes contributed to learning. In Exp.3, we examined whether learning is influenced by the disparity between the follow-through contexts. We found that the location of follow-through targets had little effect on total learning, yet it led to more instances in which participants failed to learn the task. In Exp. 4, we explored the generalization capability to untrained targets. Participants showed near-flat generalization of the implicit and explicit processes. Overall, our results indicate that follow-through contextual cues might activate, in part, top-down cognitive factors that influence not only the dynamics of the explicit learning, but also the implicit process.


Sign in / Sign up

Export Citation Format

Share Document