scholarly journals Prehension Synergies in the Grasps With Complex Friction Patterns: Local Versus Synergic Effects and the Template Control

2007 ◽  
Vol 98 (1) ◽  
pp. 16-28 ◽  
Author(s):  
Xun Niu ◽  
Mark L. Latash ◽  
Vladimir M. Zatsiorsky

We studied adjustments of digit forces to changes in the friction. The subjects held a handle statically in a three-digit grasp. The friction under each digit was either high or low, resulting in eight three-element friction sets (such grasps were coined the grasps with complex friction pattern). The total load was also manipulated. It was found that digit forces were adjusted not only to the supported load and local friction, but also to friction at other digits (synergic effects). When friction under a digit was low, its tangential force decreased and the normal force increased (local effects). The synergic effects were directed to maintain the equilibrium of the handle. The relation between the individual digit forces and loads agreed with the triple-product model: fin = ki(2)ki(1)L, where fin is normal force of digit i, L is the load (newtons), ki(1) is a dimensionless coefficient representing sharing the total tangential force among the digits (∑ ki(1) = 1.0), and ki(2) is a coefficient representing the relation between the tangential and normal forces of digit i (the overall friction equivalent, OFE). At each friction set, the central controller selected the grasping template—a three-element array of ki(2)ki(1) products—and then scaled the template with the load magnitude.

1998 ◽  
Vol 80 (4) ◽  
pp. 1989-2002 ◽  
Author(s):  
Ingvars Birznieks ◽  
Magnus K. O. Burstedt ◽  
Benoni B. Edin ◽  
Roland S. Johansson

Birznieks, Ingvars, Magnus K. O. Burstedt, Benoni B. Edin, and Roland S. Johansson. Mechanisms for force adjustments to unpredictable frictional changes at individual digits during two-fingered manipulation. J. Neurophysiol. 80: 1989–2002, 1998. Previous studies on adaptation of fingertip forces to local friction at individual digit–object interfaces largely focused on static phases of manipulative tasks in which humans could rely on anticipatory control based on the friction in previous trials. Here we instead analyze mechanisms underlying this adaptation after unpredictable changes in local friction between consecutive trials. With the tips of the right index and middle fingers or the right and left index fingers, subjects restrained a manipulandum whose horizontal contact surfaces were located side by side. At unpredictable moments a tangential force was applied to the contact surfaces in the distal direction at 16 N/s to a plateau at 4 N. The subjects were free to use any combination of normal and tangential forces at the two fingers, but the sum of the tangential forces had to counterbalance the imposed load. The contact surface of the right index finger was fine-grained sandpaper, whereas that of the cooperating finger was changed between sandpaper and the more slippery rayon. The load increase automatically triggered normal force responses at both fingers. When a finger contacted rayon, subjects allowed slips to occur at this finger during the load force increase instead of elevating the normal force. These slips accounted for a partitioning of the load force between the digits that resulted in an adequate adjustment of the normal:tangential force ratios to the local friction at each digit. This mechanism required a fine control of the normal forces. Although the normal force at the more slippery surface had to be comparatively low to allow slippage, the normal forces applied by the nonslipping digit at the same time had to be high enough to prevent loss of the manipulandum. The frictional changes influenced the normal forces applied before the load ramp as well as the size of the triggered normal force responses similarly at both fingers, that is, with rayon at one contact surface the normal forces increased at both fingers. Thus to independently adapt fingertip forces to the local friction the normal forces were controlled at an interdigital level by using sensory information from both engaged digits. Furthermore, subjects used both short- and long-term anticipatory mechanisms in a manner consistent with the notion that the central nervous system (CNS) entertains internal models of relevant object and task properties during manipulation.


2012 ◽  
Vol 28 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Gregory P. Slota ◽  
Mark L. Latash ◽  
Vladimir M. Zatsiorsky

When grasping and manipulating objects, the central controller utilizes the mechanical advantage of the normal forces of the fingers for torque production. Whether the same is valid for tangential forces is unknown. The main purpose of this study was to determine the patterns of finger tangential forces and the use of mechanical advantage as a control mechanism when dealing with objects of nonuniform finger positioning. A complementary goal was to explore the interaction of mechanical advantage (moment arm) and the role a finger has as a torque agonist/antagonist with respect to external torques (±0.4 N m). Five 6-dfforce/torque transducers measured finger forces while subjects held a prism handle (6 cm width × 9 cm height) with and without a single finger displaced 2 cm (handle width). The effect of increasing the tangential moment arm was significant (p< .01) for increasing tangential forces (in >70% of trials) and hence creating greater moments. Thus, the data provides evidence that the grasping system as a rule utilizes mechanical advantage for generating tangential forces. The increase in tangential force was independent of whether the finger was acting as a torque agonist or antagonist, revealing their effects to be additive.


2010 ◽  
Vol 103 (2) ◽  
pp. 950-961 ◽  
Author(s):  
H. E. Wheat ◽  
L. M. Salo ◽  
A. W. Goodwin

Control of tangential force plays a key role in everyday manipulations. In anesthetized monkeys, forces tangential to the skin were applied at a range of magnitudes comparable to those used in routine manipulations and in eight different directions. The paradigm used enabled separation of responses to tangential force from responses to the background normal force. For slowly adapting type I (SAI) afferents, tangential force responses ranged from excitatory through no response to suppression, with both a static and dynamic component. For fast adapting type I (FAI) afferents, responses were dynamic and excitatory only. Responses of both afferent types were scaled by tangential force magnitude, elucidating the neural basis for previous human psychophysical scaling data. Most afferents were direction selective with a range of preferred directions and a range in sharpness of tuning. Both the preferred direction and the degree of tuning were independent of the background normal force. Preferred directions were distributed uniformly over 360° for SAI afferents, but for FAI afferents they were biased toward the proximo-ulnar direction. Afferents from all over the glabrous skin of the distal segment of the finger responded; there was no evident relationship between the position of an afferent's receptive field on the finger and its preferred direction or its degree of tuning. Nor were preferred directions biased either toward or away from the receptive field center. In response to the relatively large normal forces, some afferents saturated and others did not, regardless of the positions of their receptive fields. Total afferent response matched human psychophysical scaling functions for normal force.


1997 ◽  
Vol 78 (3) ◽  
pp. 1619-1630 ◽  
Author(s):  
Hiroshi Kinoshita ◽  
Lars Bäckström ◽  
J. Randall Flanagan ◽  
Roland S. Johansson

Kinoshita, Hiroshi, Lars Bäckström, J. Randall Flanagan, and Roland S. Johansson. Tangential torque effects on the control of grip forces when holding objects with a precision grip. J. Neurophysiol. 78: 1619–1630, 1997. When we manipulate small objects, our fingertips are generally subjected to tangential torques about the axis normal to the grasp surface in addition to linear forces tangential to the grasp surface. Tangential torques can arise because the normal force is distributed across the contact area rather than focused at a point. We investigated the effects of tangential torques and tangential forces on the minimum normal forces required to prevent slips (slip force) and on the normal forces actually employed by subjects to hold an object in a stationary position with the use of the tips of the index finger and thumb. By changing the location of the object's center of gravity in relation to the grasp surface, various levels of tangential torque (0–50 N⋅mm) were created while the subject counteracted object rotation. Tangential force (0–3.4 N) was varied by changing the weight of the object. The flat grasp surfaces were covered with rayon, suede, or sandpaper, providing differences in friction in relation to the skin. Under zero tangential force, both the employed normal force and the slip force increased in proportion to tangential torque with a slope that reflected the current frictional condition. Likewise, with pure tangential force, these forces increased in proportion to tangential force. The effects of combined tangential torques and tangential forces on the slip force were primarily additive, but there was a significant interaction of these variables. Specifically, the increase in slip force for a given increment in torque decreases as a function of tangential force. A mathematical model was developed that successfully predicted slip force from tangential torque, tangential force, and an estimate of coefficient of static friction in the digit-surface interface. The effects of combined tangential torques and forces on the employed normal force showed the same pattern as the effects on the slip force. The safety margin against frictional slips, measured as the difference between the employed normal force and the slip force, was relatively small and constant across all tangential force and torque levels except at small torques (<10 N⋅mm). There was no difference in safety margin between the digits. In conclusion, tangential torque strongly influences the normal force required for grasp stability. When controlling normal force, people take into account, in a precise fashion, the slip force reflecting both tangential force and tangential torque and their interaction as well as the current frictional condition in the object-digit interface.


Author(s):  
Olga Olegovna Eremenko ◽  
Lyubov Borisovna Aminul ◽  
Elena Vitalievna Chertina

The subject of the research is the process of making managerial decisions for innovative IT projects investing. The paper focuses on the new approach to decision making on investing innovative IT projects using expert survey in a fuzzy reasoning system. As input information, expert estimates of projects have been aggregated into six indicators having a linguistic description of the individual characteristics of the project type "high", "medium", and "low". The task of decision making investing has been formalized and the term-set of the output variable Des has been defined: to invest 50-75% of the project cost; to invest 20-50% of the project cost; to invest 10-20% of the project cost; to send the project for revision; to turn down investing project. The fuzzy product model of making investment management decisions has been developed; it adequately describes the process of investment management. The expediency of using constructed production model on a practical example is shown.


2018 ◽  
Vol 2 (4) ◽  
pp. 80 ◽  
Author(s):  
Mir Molaie ◽  
Ali Zahedi ◽  
Javad Akbari

Currently, because of stricter environmental standards and highly competitive markets, machining operations, as the main part of the manufacturing cycle, need to be rigorously optimized. In order to simultaneously maximize the production quality and minimize the environmental issues related to the grinding process, this research study evaluates the performance of minimum quantity lubrication (MQL) grinding using water-based nanofluids in the presence of horizontal ultrasonic vibrations (UV). In spite of the positive impacts of MQL using nanofluids and UV which are extensively reported in the literature, there is only a handful of studies on concurrent utilization of these two techniques. To this end, for this paper, five kinds of water-based nanofluids including multiwall carbon nanotube (MWCNT), graphite, Al2O3, graphene oxide (GO) nanoparticles, and hybrid Al2O3/graphite were employed as MQL coolants, and the workpiece was oscillated along the feed direction with 21.9 kHz frequency and 10 µm amplitude. Machining forces, specific energy, and surface quality were measured for determining the process efficiency. As specified by experimental results, the variation in the material removal nature made by ultrasonic vibrations resulted in a drastic reduction of the grinding normal force and surface roughness. In addition, the type of nanoparticles dispersed in water had a strong effect on the grinding tangential force. Hybrid Al2O3/graphite nanofluid through two different kinds of lubrication mechanisms—third body and slider layers—generated better lubrication than the other coolants, thereby having the lowest grinding forces and specific energy (40.13 J/mm3). It was also found that chemically exfoliating the graphene layers via oxidation and then purification prior to dispersion in water promoted their effectiveness. In conclusion, UV assisted MQL grinding increases operation efficiency by facilitating the material removal and reducing the use of coolants, frictional losses, and energy consumption in the grinding zone. Improvements up to 52%, 47%, and 61%, respectively, can be achieved in grinding normal force, specific energy, and surface roughness compared with conventional dry grinding.


2021 ◽  
Author(s):  
Xiaocui Wang ◽  
◽  
Runlan Wang ◽  
Bo Huang ◽  
Jiliang Mo ◽  
...  

In this work, a comparative study is performed to investigate the influence of time-varying normal forces on the friction properties and friction-induced stick-slip vibration by experimental and theoretical methods. In the experiments, constant and harmonic-varying normal forces are applied, respectively. The measured vibration signals under two loading forms are compared in both time and frequency domains. In addition, mathematical tools such as phase space reconstruction and Fourier spectra are used to reveal the science behind the complicated dynamic behaviour. It can be found that the friction system shows steady stick-slip vibration, and the main frequency does not vary with the magnitude of the constant normal force, but the size of limit cycle increases with the magnitude of the constant normal force. In contrast, the friction system harmonic normal force shows complicated behaviour, for example, higher-frequency larger-amplitude vibration occurs as the frequency of the normal force increases. The interesting findings offer a new way for controlling friction-induced stick-slip vibration in engineering applications.


2021 ◽  
Vol 255 ◽  
pp. 01004
Author(s):  
Qiankun Liu ◽  
Tom Smy ◽  
Ahmad Atieh ◽  
Pavel Cheben ◽  
Alejandro Sánchez-Postigo ◽  
...  

Existing OPAs are typically based on 2D rectangular arrays or 1D linear arrays. Both approaches present a limited field-of-view (FOV) due to the presence of the grating lobes when the element spacing is larger than λ/2. To address the need for an increased steering range, we propose a new design strategy of an OPA system utilizing a 2D circular phased array, with a substantially increased FOV. We present a circular OPA using a demonstrated antenna element design, with an 820-element array. A steering range ΩSR calculated as a solid angle of 0.51π sr, and an angular beamwidth of 0.22°, was achieved. The array exhibits a sidelobe suppression larger than 10 dB, and a FOV of 2π sr. Although the performance is limited by the far field pattern of the individual antenna we chose, our circular OPA achieved, to the best of our knowledge, the largest steering range reported to date compared to the state-of-the-art integrated optical phased arrays reported in literature.


2020 ◽  
Author(s):  
Banuvathy Rajakumar ◽  
Varadhan SKM

AbstractBackgroundThe human hand plays a crucial role in accomplishing activities of daily living. The contribution of each finger in the human hand is remarkably unique in establishing object stabilization. According to the mechanical advantage hypothesis, the little finger tends to exert a greater normal force than the ring finger during a supination moment production task to stabilize the object. Similarly, during pronation, the index finger produces more normal force when compared with the middle finger. Hence, the central nervous system employs the peripheral fingers for torque generation to establish the equilibrium as they have a mechanical advantage of longer moment arms for normal force. In our study, we tested whether the mechanical advantage hypothesis is supported in a task in which the contribution of thumb was artificially reduced. We also computed the safety margin of the individual fingers and thumb.MethodologyFifteen participants used five-finger prismatic precision grip to hold a custom-built handle with a vertical railing on the thumb side. A slider platform was placed on the railing such that the thumb sensor could move either up or down. There were two experimental conditions. In the “Fixed” condition, the slider was mechanically fixed, and hence the thumb sensor could not move. In the “Free” condition, the slider platform on which the thumb sensor was placed could freely move. In both conditions, the instruction was to grasp and hold the handle (and the platform) in static equilibrium. We recorded tangential and normal forces of all the fingers.ResultsThe distribution of fingertip forces and moments changed depending on whether the thumb platform was movable (or not). In the free condition, the drop in the tangential force of thumb was counteracted by an increase in the normal force of the ring and little finger. Critically, the normal forces of the ring and little finger were statistically equivalent. The safety margin of the index and middle finger did not show a significant drop in the free condition when compared to fixed condition.ConclusionWe conclude that our results does not support the mechanical advantage hypothesis at least for the specific mechanical task considered in our study. In the free condition, the normal force of little finger was comparable to the normal force of the ring finger. Also, the safety margin of the thumb and ring finger increased to prevent slipping of the thumb platform and to maintain the handle in static equilibrium during the free condition. However, the rise in the safety margin of the ring finger was not compensated by a drop in the safety margin of the index and middle finger.


1984 ◽  
Vol 106 (1) ◽  
pp. 154-163 ◽  
Author(s):  
D. P. Saini

Mathematical models describing the deflection behavior of the wheel-work contact presented so far are based on the assumption that contact deflections are a direct function of the normal force on the wheel or the grains during grinding. This paper presents experimental results showing the evidence of a new mechanism of contact deflections due to the rotation of grain as a result of the tangential force component. In this perspective, a new model which considers the deflections due to both the normal and the tangential force is proposed and developed with the assumption of elasto-plastic deformation of the workpiece material around the grain during cutting. The model is shown to be consistent with experimental deflections obtained from single grain cutting on mild steel and EN25 steel specimens.


Sign in / Sign up

Export Citation Format

Share Document