scholarly journals Human perception of whole body roll-tilt orientation in a hypogravity analog: underestimation and adaptation

2018 ◽  
Vol 120 (6) ◽  
pp. 3110-3121 ◽  
Author(s):  
Raquel C. Galvan-Garza ◽  
Torin K. Clark ◽  
David Sherwood ◽  
Ana Diaz-Artiles ◽  
Marissa Rosenberg ◽  
...  

Overestimation of roll tilt in hypergravity (“G-excess” illusion) has been demonstrated, but corresponding sustained hypogravic conditions are impossible to create in ground laboratories. In this article we describe the first systematic experimental evidence that in a hypogravity analog, humans underestimate roll tilt. We studied perception of self-roll tilt in nine subjects, who were supine while spun on a centrifuge to create a hypogravity analog. By varying the centrifuge rotation rate, we modulated the centripetal acceleration (GC) at the subject’s head location (0.5 or 1 GC) along the body axis. We measured orientation perception using a subjective visual vertical task in which subjects aligned an illuminated bar with their perceived centripetal acceleration direction during tilts (±11.5–28.5°). As hypothesized, based on the reduced utricular otolith shearing, subjects initially underestimated roll tilts in the 0.5 GC condition compared with the 1 GC condition (mean perceptual gain change = −0.27, P = 0.01). When visual feedback was given after each trial in 0.5 GC, subjects’ perceptual gain increased in approximately exponential fashion over time (time constant = 16 tilts or 13 min), and after 45 min, the perceptual gain was not significantly different from the 1 GC baseline (mean gain difference between 1 GC initial and 0.5 GC final = 0.16, P = 0.3). Thus humans modified their interpretation of sensory cues to more correctly report orientation during this hypogravity analog. Quantifying the acute orientation perceptual learning in such an altered gravity environment may have implications for human space exploration on the moon or Mars. NEW & NOTEWORTHY Humans systematically overestimate roll tilt in hypergravity. However, human perception of orientation in hypogravity has not been quantified across a range of tilt angles. Using a centrifuge to create a hypogravity centripetal acceleration environment, we found initial underestimation of roll tilt. Providing static visual feedback, perceptual learning reduced underestimation during the hypogravity analog. These altered gravity orientation perceptual errors and adaptation may have implications for astronauts.

2017 ◽  
Vol 137 (10) ◽  
pp. 1057-1062 ◽  
Author(s):  
Atsushi Tamura ◽  
Yoshiro Wada ◽  
Takuo Inui ◽  
Akihiro Shiotani

2015 ◽  
Vol 113 (7) ◽  
pp. 2062-2077 ◽  
Author(s):  
Torin K. Clark ◽  
Michael C. Newman ◽  
Charles M. Oman ◽  
Daniel M. Merfeld ◽  
Laurence R. Young

Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity ( P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities ( P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally.


2017 ◽  
Vol 118 (4) ◽  
pp. 2499-2506 ◽  
Author(s):  
A. Pomante ◽  
L. P. J. Selen ◽  
W. P. Medendorp

The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical—as a proxy for the tilt percept—during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s2peak acceleration, 80 cm displacement). While subjects ( n=10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model’s prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical.NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the disambiguation of linear acceleration and spatial orientation. We discuss the dynamics of these illusory percepts in terms of a dynamic Bayesian model that combines uncertainty in the vestibular signals with priors based on the natural statistics of head motion.


2017 ◽  
Vol 117 (5) ◽  
pp. 1948-1958 ◽  
Author(s):  
Bryan K. Ward ◽  
Christopher J. Bockisch ◽  
Nicoletta Caramia ◽  
Giovanni Bertolini ◽  
Alexander Andrea Tarnutzer

Accurate and precise estimates of direction of gravity are essential for spatial orientation. According to Bayesian theory, multisensory vestibular, visual, and proprioceptive input is centrally integrated in a weighted fashion based on the reliability of the component sensory signals. For otolithic input, a decreasing signal-to-noise ratio was demonstrated with increasing roll angle. We hypothesized that the weights of vestibular (otolithic) and extravestibular (visual/proprioceptive) sensors are roll-angle dependent and predicted an increased weight of extravestibular cues with increasing roll angle, potentially following the Bayesian hypothesis. To probe this concept, the subjective visual vertical (SVV) was assessed in different roll positions (≤ ± 120°, steps = 30°, n = 10) with/without presenting an optokinetic stimulus (velocity = ± 60°/s). The optokinetic stimulus biased the SVV toward the direction of stimulus rotation for roll angles ≥ ± 30° ( P < 0.005). Offsets grew from 3.9 ± 1.8° (upright) to 22.1 ± 11.8° (±120° roll tilt, P < 0.001). Trial-to-trial variability increased with roll angle, demonstrating a nonsignificant increase when providing optokinetic stimulation. Variability and optokinetic bias were correlated ( R2 = 0.71, slope = 0.71, 95% confidence interval = 0.57–0.86). An optimal-observer model combining an optokinetic bias with vestibular input reproduced measured errors closely. These findings support the hypothesis of a weighted multisensory integration when estimating direction of gravity with optokinetic stimulation. Visual input was weighted more when vestibular input became less reliable, i.e., at larger roll-tilt angles. However, according to Bayesian theory, the variability of combined cues is always lower than the variability of each source cue. If the observed increase in variability, although nonsignificant, is true, either it must depend on an additional source of variability, added after SVV computation, or it would conflict with the Bayesian hypothesis. NEW & NOTEWORTHY Applying a rotating optokinetic stimulus while recording the subjective visual vertical in different whole body roll angles, we noted the optokinetic-induced bias to correlate with the roll angle. These findings allow the hypothesis that the established optimal weighting of single-sensory cues depending on their reliability to estimate direction of gravity could be extended to a bias caused by visual self-motion stimuli.


2008 ◽  
Vol 99 (5) ◽  
pp. 2264-2280 ◽  
Author(s):  
R.A.A. Vingerhoets ◽  
W. P. Medendorp ◽  
J.A.M. Van Gisbergen

To assess the effects of degrading canal cues for dynamic spatial orientation in human observers, we tested how judgments about visual-line orientation in space (subjective visual vertical task, SVV) and estimates of instantaneous body tilt (subjective body-tilt task, SBT) develop in the course of three cycles of constant-velocity roll rotation. These abilities were tested across the entire tilt range in separate experiments. For comparison, we also obtained SVV data during static roll tilt. We found that as tilt increased, dynamic SVV responses became strongly biased toward the head pole of the body axis (A-effect), as if body tilt was underestimated. However, on entering the range of near-inverse tilts, SVV responses adopted a bimodal pattern, alternating between A-effects (biased toward head-pole) and E-effects (biased toward feet-pole). Apart from an onset effect, this tilt-dependent pattern of systematic SVV errors repeated itself in subsequent rotation cycles with little sign of worsening performance. Static SVV responses were qualitatively similar and consistent with previous reports but showed smaller A-effects. By contrast, dynamic SBT errors were small and unimodal, indicating that errors in visual-verticality estimates were not caused by errors in body-tilt estimation. We discuss these results in terms of predictions from a canal-otolith interaction model extended with a leaky integrator and an egocentric bias mechanism. We conclude that the egocentric-bias mechanism becomes more manifest during constant velocity roll-rotation and that perceptual errors due to incorrect disambiguation of the otolith signal are small despite the decay of canal signals.


2017 ◽  
Vol 117 (2) ◽  
pp. 846-852 ◽  
Author(s):  
Chantelle D. Murnaghan ◽  
Mark G. Carpenter ◽  
Romeo Chua ◽  
J. Timothy Inglis

Small-amplitude, higher frequency oscillations of the body or limb are typically observed when humans attempt to maintain the position of a body or limb in space. Recent investigations have suggested that these involuntary movements of the body during stance could be used as an exploratory means of acquiring sensory information. In the present study, we wanted to determine whether a similar phenomenon would be observed in an upper limb postural task that does not involve whole body postural control. Participants were placed in a supine position with the arm pointing vertically and were asked to maintain the position of the limb in space with and without visual feedback. The wrist was attached to an apparatus that allowed the experimenter to stabilize or “lock” movements of the arm without the participants' awareness. When participants were “locked,” the forces recorded predicted greater accelerations than those observed when the arm was freely moving with and without visual feedback. From unlocked to locked, angular accelerations increased in the eyes-closed condition and when participants were provided visual feedback of arm angular displacements. Irrespective of their origin, small displacements of the limb may be used as an exploratory means of acquiring sensory information from the surrounding environment. NEW & NOTEWORTHY The role of movement variability during a static limb position task is currently unknown. We tested whether variability remains in the absence of sensory-based error with an apparatus that stabilized the limb without the participant's knowledge during a static postural task. Increased forces observed during arm stabilization predicted movements greater than those observed when not externally stabilized. These results suggest movement variability during static postures could facilitate the gathering of sensory information from the surrounding environment.


2019 ◽  
Vol 111 ◽  
pp. 02072 ◽  
Author(s):  
Žiga Lampret ◽  
Gorazd Krese ◽  
Matjaž Prek

In ventilated and air-conditioned indoor environment, air movement substantially impacts thermal sensation and comfort of occupants from the point of view of whole body and local thermal sensation. Skin temperature and its rate of change are important factors for thermal sensation. Both are affected by the airflow velocity and temperature changes around the body which causes skin temperature fluctuations and changes in convective heat transfer. In this study the impact of temperature fluctuations in airflow on human thermal sensation was examined. For the purposes of the study, an air handling unit was designed for generating airflows with temperature fluctuations and used in a subjective experiment. The experimental study indicates that temperature fluctuations possibly influence the human perception of air movement with a distinct cooling effect.


2014 ◽  
Vol 112 (11) ◽  
pp. 2672-2679 ◽  
Author(s):  
A. A. Tarnutzer ◽  
C. J. Bockisch ◽  
D. Straumann ◽  
S. Marti ◽  
G. Bertolini

The subjective visual vertical (SVV) indicates perceived direction of gravity. Even in healthy human subjects, roll angle-dependent misestimations, roll overcompensation (A-effect, head-roll > 60° and <135°) and undercompensation (E-effect, head-roll < 60°), occur. Previously, we demonstrated that, after prolonged roll-tilt, SVV estimates when upright are biased toward the preceding roll position, which indicates that perceived vertical (PV) is shifted by the prior tilt (Tarnutzer AA, Bertolini G, Bockisch CJ, Straumann D, Marti S. PLoS One 8: e78079, 2013). Hypothetically, PV in any roll position could be biased toward the previous roll position. We asked whether such a “global” bias occurs or whether the bias is “local”. The SVV of healthy human subjects ( N = 9) was measured in nine roll positions (−120° to +120°, steps = 30°) after 5 min of roll-tilt in one of two adaptation positions (±90°) and compared with control trials without adaptation. After adapting, adjustments were shifted significantly ( P < 0.05) toward the previous adaptation position for nearby roll-tilted positions (±30°, ±60°) and upright only. We computationally simulated errors based on the sum of a monotonically increasing function (producing roll undercompensation) and a mixture of Gaussian functions (representing roll overcompensation centered around PV). In combination, the pattern of A- and E-effects could be generated. By shifting the function representing local overcompensation toward the adaptation position, the experimental postadaptation data could be fitted successfully. We conclude that prolonged roll-tilt locally distorts PV rather than globally shifting it. Short-term adaptation of roll overcompensation may explain these shifts and could reflect the brain's strategy to optimize SVV estimates around recent roll positions. Thus postural stability can be improved by visually-mediated compensatory responses at any sustained body-roll orientation.


Sign in / Sign up

Export Citation Format

Share Document