Background Activity Regulates Excitability of Rat Hippocampal CA1 Pyramidal Neurons by Adaptation of a K+ Conductance

2006 ◽  
Vol 95 (3) ◽  
pp. 2007-2012 ◽  
Author(s):  
Ingrid van Welie ◽  
Johannes A. van Hooft ◽  
Wytse J. Wadman

In the in vivo brain background synaptic activity has a strong modulatory influence on neuronal excitability. Here we report that in rat hippocampal slices, blockade of endogenous in vitro background activity results in an increased excitability of CA1 pyramidal neurons within tens of minutes. The increase in excitability constitutes a leftward shift in the input–output relationship of pyramidal neurons, indicating a reduced threshold for the induction of action potentials. The increase in excitability results from an adaptive decrease in a sustained K+ conductance, as recorded from somatic cell–attached patches. After 20 min of blockade of background activity, the mean sustained K+ current amplitude in somatic patches was reduced to 46 ± 9% of that in time-matched control patches. Blockade of background activity did not affect fast Na+ conductance. Together, these results suggests that the reduction in K+ conductance serves as an adaptive mechanism to increase the excitability of CA1 pyramidal neurons in response to changes in background activity such that the dynamic range of the input–output relationship is effectively maintained.

2006 ◽  
Vol 95 (4) ◽  
pp. 2590-2601 ◽  
Author(s):  
Hong-Shuo Sun ◽  
Zhong-Ping Feng ◽  
Takashi Miki ◽  
Susumu Seino ◽  
Robert J. French

Adenosine triphosphate (ATP)–sensitive potassium (KATP) channels, incorporating Kir6.x and sulfonylurea receptor subunits, are weak inward rectifiers that are thought to play a role in neuronal protection from ischemic insults. However, the involvement of Kir6.2-containing KATP channel in hippocampus and neocortex has not been tested directly. To delineate the physiological roles of Kir6.2 channels in the CNS, we used knockout (KO) mice that do not express Kir6.2. Immunocytochemical staining demonstrated that Kir6.2 protein was expressed robustly in hippocampal neurons of the wild-type (WT) mice and absent in the KO. To examine neuronal sensitivity to metabolic stress in vitro, and to ischemia in vivo, we 1) exposed hippocampal slices to transient oxygen and glucose deprivation (OGD) and 2) produced focal cerebral ischemia by middle cerebral artery occlusion (MCAO). Both slice and whole animal studies showed that neurons from the KO mice were severely damaged after anoxia or ischemia, whereas few injured neurons were observed in the WT, suggesting that Kir6.2 channels are necessary to protect neurons from ischemic insults. Membrane potential recordings from the WT CA1 pyramidal neurons showed a biphasic response to OGD; a brief hyperpolarization was followed by a small depolarization during OGD, with complete recovery within 30 min after returning to normoxic conditions. By contrast, CA1 pyramidal neurons from the KO mice were irreversibly depolarized by OGD exposure, without any preceding hyperpolarization. These data suggest that expression of Kir6.2 channels prevents prolonged depolarization of neurons resulting from acute hypoxic or ischemic insults, and thus protects these central neurons from the injury.


2008 ◽  
Vol 99 (6) ◽  
pp. 2985-2997 ◽  
Author(s):  
Kay Thurley ◽  
Walter Senn ◽  
Hans-Rudolf Lüscher

Dopaminergic modulation of prefrontal cortical activity is known to affect cognitive functions like working memory. Little consensus on the role of dopamine modulation has been achieved, however, in part because quantities directly relating to the neuronal substrate of working memory are difficult to measure. Here we show that dopamine increases the gain of the frequency-current relationship of layer 5 pyramidal neurons in vitro in response to noisy input currents. The gain increase could be attributed to a reduction of the slow afterhyperpolarization by dopamine. Dopamine also increases neuronal excitability by shifting the input-output functions to lower inputs. The modulation of these response properties is mainly mediated by D1 receptors. Integrate-and-fire neurons were fitted to the experimentally recorded input-output functions and recurrently connected in a model network. The gain increase induced by dopamine application facilitated and stabilized persistent activity in this network. The results support the hypothesis that catecholamines increase the neuronal gain and suggest that dopamine improves working memory via gain modulation.


2018 ◽  
Author(s):  
Hyowon Chung ◽  
Kyerl Park ◽  
Hyun Jae Jang ◽  
Michael M Kohl ◽  
Jeehyun Kwag

AbstractAbnormal accumulation of amyloid β oligomers (AβO) is a hallmark of Alzheimer’s disease (AD), which leads to learning and memory deficits. Hippocampal theta oscillations that are critical in spatial navigation, learning and memory are impaired in AD. Since GABAergic interneurons, such as somatostatin-positive (SST+) and parvalbumin-positive (PV+) interneurons, are believed to play key roles in the hippocampal oscillogenesis, we asked whether AβO selectively impairs these SST+ and PV+ interneurons. To selectively manipulate SST+ or PV+ interneuron activity in mice with AβO pathologyin vivo, we co-injected AβO and adeno-associated virus (AAV) for expressing floxed channelrhodopsin-2 (ChR2) into the hippocampus of SST-Cre or PV-Cre mice. Local field potential (LFP) recordingsin vivoin these AβO–injected mice showed a reduction in the peak power of theta oscillations and desynchronization of spikes from CA1 pyramidal neurons relative to theta oscillations compared to those in control mice. Optogenetic-activation of SST+ but not PV+ interneurons in AβO–injected mice fully restored the peak power of theta oscillations and resynchronized the theta spike phases to a level observed in control mice.In vitrowhole-cell voltage-clamp recordings in CA1 pyramidal neurons in hippocampal slices treated with AβO revealed that short-term plasticity of SST+ interneuron inhibitory inputs to CA1 pyramidal neurons at theta frequency were selectively disrupted while that of PV+ interneuron inputs were unaffected. Together, our results suggest that dysfunction in inputs from SST+ interneurons to CA1 pyramidal neurons may underlie the impairment of theta oscillations observed in AβO-injected micein vivo.Our findings identify SST+ interneurons as a target for restoring theta-frequency oscillations in early AD.


2001 ◽  
Vol 280 (6) ◽  
pp. R1815-R1822 ◽  
Author(s):  
Javier E. Stern ◽  
Mike Ludwig

To study modulatory actions of nitric oxide (NO) on GABAergic synaptic activity in hypothalamic magnocellular neurons in the supraoptic nucleus (SON), in vitro and in vivo electrophysiological recordings were obtained from identified oxytocin and vasopressin neurons. Whole cell patch-clamp recordings were obtained in vitro from immunochemically identified oxytocin and vasopressin neurons. GABAergic synaptic activity was assessed in vitro by measuring GABAA miniature inhibitory postsynaptic currents (mIPSCs). The NO donor and precursor sodium nitroprusside (SNP) and l-arginine, respectively, increased the frequency and amplitude of GABAA mIPSCs in both cell types ( P ≤ 0.001). Retrodialysis of SNP (50 mM) onto the SON in vivo inhibited the activity of both neuronal types ( P ≤ 0.002), an effect that was reduced by retrodialysis of the GABAA-receptor antagonist bicuculline (2 mM, P≤ 0.001). Neurons activated by intravenous infusion of 2 M NaCl were still strongly inhibited by SNP. These results suggest that NO inhibition of neuronal excitability in oxytocin and vasopressin neurons involves pre- and postsynaptic potentiation of GABAergic synaptic activity in the SON.


2016 ◽  
Vol 40 (6) ◽  
pp. 1274-1288 ◽  
Author(s):  
Ting Ju ◽  
Yuru Li ◽  
Xiaoran Wang ◽  
Lifeng Xiao ◽  
Li Jiang ◽  
...  

Background: Streptozotocin (STZ) has served as an agent to generate an Alzheimer's disease (AD) model in rats, while edaravone (EDA), a novel free radical scavenger, has recently emerged as an effective treatment for use in vivo and vitro AD models. However, to date, these beneficial effects of EDA have only been clearly demonstrated within STZ-induced animal models of AD and in cell models of AD. A better understanding of the mechanisms of EDA may provide the opportunity for their clinical application in the treatment of AD. Therefore, the purpose of this study was to investigate the underlying mechanisms of STZ and EDA as assessed upon electrophysiological alterations in CA1 pyramidal neurons of rat hippocampal slices. Methods: Through measures of evoked excitatory postsynaptic currents (eEPSCs), AMPAR-mediated eEPSCs (eEPSCsAMPA), evoked inhibitory postsynaptic currents (eIPSCs), evoked excitatory postsynaptic current paired pulse ratio (eEPSC PPR) and evoked inhibitory postsynaptic current paired pulse ratio (eIPSC PPR), it was possible to investigate mechanisms as related to the neurotoxicity of STZ and reductions in these effects by EDA. Results: Our results showed that STZ (1000 µM) significantly inhibited peak amplitudes of eEPSCs, eEPSCsAMPA and eIPSCs, while EDA (1000 µM) attenuated these STZ-induced changes at holding potentials ranging from -60mV to +40 mV for EPSCs and -60mV to +20 mV for IPSCs. Our work also indicated that mean eEPSC PPR were substantially altered by STZ, effects which were partially restored by EDA. In contrast, no significant effects upon eIPSC PPR were obtained in response to STZ and EDA. Conclusion: Our data suggest that STZ inhibits glutamatergic transmission involving pre-synaptic mechanisms and AMPAR, and that STZ inhibits GABAergic transmission by post-synaptic mechanisms within CA1 pyramidal neurons. These effects are attenuated by EDA.


2004 ◽  
Vol 91 (6) ◽  
pp. 2568-2577 ◽  
Author(s):  
Adam W. Hendricson ◽  
John R. Sibbald ◽  
Richard A. Morrisett

To discriminate between pre- and postsynaptic effects of ethanol on N-methyl-d-aspartate receptor (NMDAR) signaling in hippocampus, we adapted the technique of Sr2+ substitution to the hippocampal blind slice patch-clamp preparation. Hippocampal slices were isolated from 12- to 20-day-old rats that were killed in accordance with University of Texas Institutional Animal Care and Use Committee guidelines. NMDAR miniature excitatory postsynaptic currents (mEPSCs) were evoked from CA1 pyramidal neurons in the presence of Sr2+ (4 mM), causing the synchronous EPSC observed in the presence of Ca2+ to be supplanted by asynchronous mEPSCs. Amplitudes typically ranged from 5 to 40 pA and responded to the NMDAR antagonist (DL)-APV (50 μM), with a statistically significant reduction in mean amplitude. Ethanol (25, 50, and 75 mM) exerted dose-dependent effects on mEPSC amplitude and frequency. Peak amplitude inhibition was observed at 75 mM ethanol. Notably, ethanol significantly decreased event frequency at 50 and 75 mM ethanol. Ethanol (75 mM) also significantly increased the paired-pulse ratio of NMDAR EPSCs. Cumulative comparisons of decay time constants derived from single-exponential fitting of mEPSCs revealed significantly accelerated current decay kinetics in the presence of 75 mM ethanol. Taken together, these reductions in miniature event frequency and amplitude, concurrent with an increased rate of decay, suggest that the acute effects of ethanol on NMDAR signaling at hippocampal synapses are multifocal in nature. This finding of pre- and postsynaptic effects of ethanol on NMDAR signal strength in a brain region central to cognition is wholly consistent with previous reports of ethanol inhibition of NMDAR–long-term potentiation in vitro and with the profound cognitive deficits associated with binge-level intoxication in vivo.


2020 ◽  
Author(s):  
Limei Zhang ◽  
Teresa Padilla-Flores ◽  
Vito S. Hernández ◽  
Elba Campos-Lira ◽  
Mario A. Zetter ◽  
...  

AbstractHypothalamic arginine vasopressin (AVP)-containing magnocellular neurosecretory neurons (AVPMNN) emit collaterals to synaptically innervate limbic regions influencing learning, motivational behavior and fear responses. The purpose of the present work is to characterize the dynamics of expression changes of two postsynaptic density (PSD) proteins, AMPAR subunit GluA1 and PSD scaffolding protein 95 (PSD95), which are known to be key determinants for synaptic strength, in response to in vivo and ex vivo manipulations of AVPMNN neuronal activation state, or exposure to exogenous AVP, metabolites and some signaling pathway inhibitors. Both long term water deprivation in vivo, which powerfully upregulates AVPMNN activity, and exogenous APV application ex vivo in brain slices, increased GluA1 and PSD95 expression and enhanced neuronal excitability in ventral hippocampal CA1 pyramidal neurons. Involvement of PI3k signaling in AVP-dependent plasticity is suggested by blockade of both AVP-induced protein up-regulation and enhanced neuronal excitability by the PI3k blocker wortmannin in hippocampal slices. We interpret these results as part of vasopressin’s central effects on synaptic organization in limbic regions modulating the strength of a specific set of synaptic proteins in hypothalamic-limbic circuits.Supported by grantsUNAM-DGAPA-PAPIIT-IN216918 & CONACYT-CB-238744.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Peter James Morgan ◽  
Romain Bourboulou ◽  
Caroline Filippi ◽  
Julie Koenig-Gambini ◽  
Jérôme Epsztein

In area CA1 of the hippocampus, the selection of place cells to represent a new environment is biased towards neurons with higher excitability. However, different environments are represented by orthogonal cell ensembles, suggesting that regulatory mechanisms exist. Activity-dependent plasticity of intrinsic excitability, as observed in vitro, is an attractive candidate. Here, using whole-cell patch-clamp recordings of CA1 pyramidal neurons in anesthetized rats, we have examined how inducing theta-bursts of action potentials affects their intrinsic excitability over time. We observed a long-lasting, homeostatic depression of intrinsic excitability which commenced within minutes, and, in contrast to in vitro observations, was not mediated by dendritic Ih. Instead, it was attenuated by the Kv1.1 channel blocker dendrotoxin K, suggesting an axonal origin. Analysis of place cells’ out-of-field firing in mice navigating in virtual reality further revealed an experience-dependent reduction consistent with decreased excitability. We propose that this mechanism could reduce memory interference.


2020 ◽  
Vol 10 (10) ◽  
pp. 706
Author(s):  
Wen-Bing Chen ◽  
Jiang Chen ◽  
Zi-Yang Liu ◽  
Bin Luo ◽  
Tian Zhou ◽  
...  

Metformin (Met) is a first-line drug for type 2 diabetes mellitus (T2DM). Numerous studies have shown that Met exerts beneficial effects on a variety of neurological disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD). However, it is still largely unclear how Met acts on neurons. Here, by treating acute hippocampal slices with Met (1 μM and 10 μM) and recording synaptic transmission as well as neuronal excitability of CA1 pyramidal neurons, we found that Met treatments significantly increased the frequency of miniature excitatory postsynaptic currents (mEPSCs), but not amplitude. Neither frequency nor amplitude of miniature inhibitory postsynaptic currents (mIPSCs) were changed with Met treatments. Analysis of paired-pulse ratios (PPR) demonstrates that enhanced presynaptic glutamate release from terminals innervating CA1 hippocampal pyramidal neurons, while excitability of CA1 pyramidal neurons was not altered. Our results suggest that Met preferentially increases glutamatergic rather than GABAergic transmission in hippocampal CA1, providing a new insight on how Met acts on neurons.


Sign in / Sign up

Export Citation Format

Share Document