Selection of events in time enhances activity throughout early visual cortex

2012 ◽  
Vol 108 (12) ◽  
pp. 3239-3252 ◽  
Author(s):  
Khena M. Swallow ◽  
Tal Makovski ◽  
Yuhong V. Jiang

Temporal selection poses unique challenges to the perceptual system. Selection is needed to protect goal-relevant stimuli from interference from new sensory input. In addition, contextual information that occurs at the same time as goal-relevant stimuli may be critical for learning. Using fMRI, we characterized how visual cortical regions respond to the temporal selection of auditory and visual stimuli. Critically, we focused on brain regions that are not involved in processing the target itself. Participants pressed a button when they heard a prespecified target tone and did not respond to other tones. Although more attention was directed to auditory input when the target tone was selected, activity in primary visual cortex increased more after target tones than after distractor tones. In contrast to spatial attention, this effect was larger in V1 than in V2 and V3. It was present in regions not typically involved in representing the target stimulus. Additional experiments demonstrated that these effects were not due to multimodal processing, rare targets, or motor responses to the targets. Thus temporal selection of behaviorally relevant stimuli enhances, rather than reduces, activity in perceptual regions involved in processing other information.

2020 ◽  
Author(s):  
Munendo Fujimichi ◽  
Hiroki Yamamoto ◽  
Jun Saiki

Are visual representations in the human early visual cortex necessary for visual working memory (VWM)? Previous studies suggest that VWM is underpinned by distributed representations across several brain regions, including the early visual cortex. Notably, in these studies, participants had to memorize images under consistent visual conditions. However, in our daily lives, we must retain the essential visual properties of objects despite changes in illumination or viewpoint. The role of brain regions—particularly the early visual cortices—in these situations remains unclear. The present study investigated whether the early visual cortex was essential for achieving stable VWM. Focusing on VWM for object surface properties, we conducted fMRI experiments while male and female participants performed a delayed roughness discrimination task in which sample and probe spheres were presented under varying illumination. By applying multi-voxel pattern analysis to brain activity in regions of interest, we found that the ventral visual cortex and intraparietal sulcus were involved in roughness VWM under changing illumination conditions. In contrast, VWM was not supported as robustly by the early visual cortex. These findings show that visual representations in the early visual cortex alone are insufficient for the robust roughness VWM representation required during changes in illumination.


2022 ◽  
Author(s):  
Andrea Kóbor ◽  
Karolina Janacsek ◽  
Petra Hermann ◽  
Zsofia Zavecz ◽  
Vera Varga ◽  
...  

Previous research recognized that humans could extract statistical regularities of the environment to automatically predict upcoming events. However, it has remained unexplored how the brain encodes the distribution of statistical regularities if it continuously changes. To investigate this question, we devised an fMRI paradigm where participants (N = 32) completed a visual four-choice reaction time (RT) task consisting of statistical regularities. Two types of blocks involving the same perceptual elements alternated with one another throughout the task: While the distribution of statistical regularities was predictable in one block type, it was unpredictable in the other. Participants were unaware of the presence of statistical regularities and of their changing distribution across the subsequent task blocks. Based on the RT results, although statistical regularities were processed similarly in both the predictable and unpredictable blocks, participants acquired less statistical knowledge in the unpredictable as compared with the predictable blocks. Whole-brain random-effects analyses showed increased activity in the early visual cortex and decreased activity in the precuneus for the predictable as compared with the unpredictable blocks. Therefore, the actual predictability of statistical regularities is likely to be represented already at the early stages of visual cortical processing. However, decreased precuneus activity suggests that these representations are imperfectly updated to track the multiple shifts in predictability throughout the task. The results also highlight that the processing of statistical regularities in a changing environment could be habitual.


2015 ◽  
Author(s):  
Claudia Lunghi

In this research binocular rivalry is used as a tool to investigate different aspects of visual and multisensory perception. Several experiments presented here demonstrated that touch specifically interacts with vision during binocular rivalry and that the interaction likely occurs at early stages of visual processing, probably V1 or V2. Another line of research also presented here demonstrated that human adult visual cortex retains an unexpected high degree of experience-dependent plasticity by showing that a brief period of monocular deprivation produced important perceptual consequences on the dynamics of binocular rivalry, reflecting a homeostatic plasticity. In summary, this work shows that binocular rivalry is a powerful tool to investigate different aspects of visual perception and can be used to reveal unexpected properties of early visual cortex.


2017 ◽  
Vol 29 (2) ◽  
pp. 398-412 ◽  
Author(s):  
Jonathan S. Cant ◽  
Yaoda Xu

Our visual system can extract summary statistics from large collections of objects without forming detailed representations of the individual objects in the ensemble. In a region in ventral visual cortex encompassing the collateral sulcus and the parahippocampal gyrus and overlapping extensively with the scene-selective parahippocampal place area (PPA), we have previously reported fMRI adaptation to object ensembles when ensemble statistics repeated, even when local image features differed across images (e.g., two different images of the same strawberry pile). We additionally showed that this ensemble representation is similar to (but still distinct from) how visual texture patterns are processed in this region and is not explained by appealing to differences in the color of the elements that make up the ensemble. To further explore the nature of ensemble representation in this brain region, here we used PPA as our ROI and investigated in detail how the shape and surface properties (i.e., both texture and color) of the individual objects constituting an ensemble affect the ensemble representation in anterior-medial ventral visual cortex. We photographed object ensembles of stone beads that varied in shape and surface properties. A given ensemble always contained beads of the same shape and surface properties (e.g., an ensemble of star-shaped rose quartz beads). A change to the shape and/or surface properties of all the beads in an ensemble resulted in a significant release from adaptation in PPA compared with conditions in which no ensemble feature changed. In contrast, in the object-sensitive lateral occipital area (LO), we only observed a significant release from adaptation when the shape of the ensemble elements varied, and found no significant results in additional scene-sensitive regions, namely, the retrosplenial complex and occipital place area. Together, these results demonstrate that the shape and surface properties of the individual objects comprising an ensemble both contribute significantly to object ensemble representation in anterior-medial ventral visual cortex and further demonstrate a functional dissociation between object- (LO) and scene-selective (PPA) visual cortical regions and within the broader scene-processing network itself.


2019 ◽  
Vol 29 (11) ◽  
pp. 4662-4678 ◽  
Author(s):  
Jason P Gallivan ◽  
Craig S Chapman ◽  
Daniel J Gale ◽  
J Randall Flanagan ◽  
Jody C Culham

Abstract The primate visual system contains myriad feedback projections from higher- to lower-order cortical areas, an architecture that has been implicated in the top-down modulation of early visual areas during working memory and attention. Here we tested the hypothesis that these feedback projections also modulate early visual cortical activity during the planning of visually guided actions. We show, across three separate human functional magnetic resonance imaging (fMRI) studies involving object-directed movements, that information related to the motor effector to be used (i.e., limb, eye) and action goal to be performed (i.e., grasp, reach) can be selectively decoded—prior to movement—from the retinotopic representation of the target object(s) in early visual cortex. We also find that during the planning of sequential actions involving objects in two different spatial locations, that motor-related information can be decoded from both locations in retinotopic cortex. Together, these findings indicate that movement planning selectively modulates early visual cortical activity patterns in an effector-specific, target-centric, and task-dependent manner. These findings offer a neural account of how motor-relevant target features are enhanced during action planning and suggest a possible role for early visual cortex in instituting a sensorimotor estimate of the visual consequences of movement.


2017 ◽  
Vol 29 (6) ◽  
pp. 953-967 ◽  
Author(s):  
Nathan M. Petro ◽  
L. Forest Gruss ◽  
Siyang Yin ◽  
Haiqing Huang ◽  
Vladimir Miskovic ◽  
...  

Emotionally salient cues are detected more readily, remembered better, and evoke greater visual cortical responses compared with neutral stimuli. The current study used concurrent EEG-fMRI recordings to identify large-scale network interactions involved in the amplification of visual cortical activity when viewing aversively conditioned cues. To generate a continuous neural signal from pericalcarine visual cortex, we presented rhythmic (10/sec) phase-reversing gratings, the orientation of which predicted the presence (CS+) or absence (CS−) of a cutaneous electric shock (i.e., the unconditioned stimulus). The resulting single trial steady-state visual evoked potential (ssVEP) amplitude was regressed against the whole-brain BOLD signal, resulting in a measure of ssVEP-BOLD coupling. Across all trial types, ssVEP-BOLD coupling was observed in both primary and extended visual cortical regions, the rolandic operculum, as well as the thalamus and bilateral hippocampus. For CS+ relative to CS− trials during the conditioning phase, BOLD-alone analyses showed CS+ enhancement at the occipital pole, superior temporal sulci, and the anterior insula bilaterally, whereas ssVEP-BOLD coupling was greater in the pericalcarine cortex, inferior parietal cortex, and middle frontal gyrus. Dynamic causal modeling analyses supported connectivity models in which heightened activity in pericalcarine cortex for threat (CS+) arises from cortico-cortical top–down modulation, specifically from the middle frontal gyrus. No evidence was observed for selective pericalcarine modulation by deep cortical structures such as the amygdala or anterior insula, suggesting that the heightened engagement of pericalcarine cortex for threat stimuli is mediated by cortical structures that constitute key nodes of canonical attention networks.


2014 ◽  
Vol 26 (10) ◽  
pp. 2187-2200 ◽  
Author(s):  
Hamed Zivari Adab ◽  
Ivo D. Popivanov ◽  
Wim Vanduffel ◽  
Rufin Vogels

Practicing simple visual detection and discrimination tasks improves performance, a signature of adult brain plasticity. The neural mechanisms that underlie these changes in performance are still unclear. Previously, we reported that practice in discriminating the orientation of noisy gratings (coarse orientation discrimination) increased the ability of single neurons in the early visual area V4 to discriminate the trained stimuli. Here, we ask whether practice in this task also changes the stimulus tuning properties of later visual cortical areas, despite the use of simple grating stimuli. To identify candidate areas, we used fMRI to map activations to noisy gratings in trained rhesus monkeys, revealing a region in the posterior inferior temporal (PIT) cortex. Subsequent single unit recordings in PIT showed that the degree of orientation selectivity was similar to that of area V4 and that the PIT neurons discriminated the trained orientations better than the untrained orientations. Unlike in previous single unit studies of perceptual learning in early visual cortex, more PIT neurons preferred trained compared with untrained orientations. The effects of training on the responses to the grating stimuli were also present when the animals were performing a difficult orthogonal task in which the grating stimuli were task-irrelevant, suggesting that the training effect does not need attention to be expressed. The PIT neurons could support orientation discrimination at low signal-to-noise levels. These findings suggest that extensive practice in discriminating simple grating stimuli not only affects early visual cortex but also changes the stimulus tuning of a late visual cortical area.


2017 ◽  
Vol 117 (3) ◽  
pp. 903-909 ◽  
Author(s):  
Astrid J. A. Lubeck ◽  
Angelique Van Ombergen ◽  
Hena Ahmad ◽  
Jelte E. Bos ◽  
Floris L. Wuyts ◽  
...  

The objectives of this study were 1) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency.


2020 ◽  
Author(s):  
Roy Moyal ◽  
Hamid B. Turker ◽  
Wen-Ming Luh ◽  
Khena M. Swallow

AbstractThough dividing one’s attention between two input streams typically impairs performance, detecting a behaviorally relevant stimulus can sometimes enhance the encoding of task-irrelevant information presented at the same time. Previous research has shown that temporal selection of this kind boosts visual cortical activity and incidental memory. An important and yet unanswered question is whether such effects are reflected in processing quality and functional connectivity in visual regions and the hippocampus. In this fMRI study, participants were asked to memorize a stream of images and press a button when they heard an auditory tone of a prespecified pitch. Images could be presented with a target tone, with a distractor tone, or without a tone. Auditory target detection increased activity throughout the ventral visual cortex but lowered it in the hippocampus. These effects were accompanied by a widespread enhancement in functional connectivity between the ventral visual cortex and the hippocampus. Image category classification accuracy was higher on target tone trials than on distractor and no tone trials in the fusiform gyrus and the parahippocampal gyrus. This effect was stronger in clusters whose activity was more correlated with the hippocampus on target tone than on distractor tone trials. In agreement with accounts suggesting that subcortical noradrenergic influences play a role in temporal selection, auditory target detection also caused an increase in locus coeruleus activity and phasic pupil responses. These findings outline a network of cortical and subcortical regions that are involved in the selection and processing of information presented at behaviorally relevant moments.Significance StatementAttention influences the degree to which we remember everyday experiences. This study examines the neural mechanisms involved in committing important events to memory. It links the selection of important information in time (temporal selection) to enhanced functional connectivity between brain regions involved in perception and encoding. It also suggests the involvement of a small brainstem structure, the locus coeruleus (LC), whose degeneration is increasingly associated with cognitive decline in aging. The process of encoding behaviorally relevant events into episodic memory thus involves large-scale, coordinated activation spanning cortical and subcortical regions.


Sign in / Sign up

Export Citation Format

Share Document