scholarly journals Stiffness Control of Balance During Quiet Standing and Dual Task in Older Adults: The MOBILIZE Boston Study

2010 ◽  
Vol 104 (6) ◽  
pp. 3510-3517 ◽  
Author(s):  
Hyun Gu Kang ◽  
Lewis A. Lipsitz

Distractions affect postural control, but this mechanism is not well understood. Diversion of resources during cognitive stress may lead to decreased motor drive and postural muscle tone. This may appear as decreased postural stiffness and increased postural sway amplitude. We hypothesized that dual tasking leads to decreased stiffness and increased sway amplitude. Postural sway (center of pressure; COP) data were used from 724 participants aged 77.9 ± 5.3 yr, a representative sample of community-dwelling older adults, the MOBILIZE Boston Study cohort. Subjects stood barefoot with eyes open for 30 s per trial on a force plate. Five trials were performed each with and without a serial subtractions-by-3 task. Sway data were fit to a damped oscillator inverted pendulum model. Amplitudes (COP and center of mass), mechanical stiffness, and damping of the sway behavior were determined. Sway amplitudes and damping increased with the dual task ( P < 0.001); stiffness decreased only mediolaterally ( P < 0.001). Those with difficulty doing the dual task exhibited larger sway and less damping mediolaterally ( P ≤ 0.001) and an increased stiffness with dual task anteroposteriorly (interaction P = 0.004). Dual task could still independently explain increases in sway ( P < 0.001) after accounting for stiffness changes. Thus the hypothesis was supported only in mediolateral sway. The simple model helped to explain the dual task related increase of sway only mediolaterally. It also elucidated the differential influence of cognitive function on the mechanics of anteroposterior and mediolateral sway behaviors. Dual task may divert the resources necessary for mediolateral postural control, thus leading to falls.

Author(s):  
Hyun Gu Kang ◽  
Madalena Costa ◽  
Attila A. Priplata ◽  
Olga V. Starobinets ◽  
Ary L. Goldberger ◽  
...  

Balance control during standing is attributable to the complex, nonlinear interactions of multiple postural control systems, manifested as the highly irregular displacements in center of pressure (COP) during standing. Aging and associated frailty may result in the degradation of these complex interactions and manifest as a loss of complexity in COP dynamics. Furthermore, frail individuals may not be able to adapt to a superimposed stress that challenges balance, leading to falls. To test these hypotheses, data were analyzed from the MOBILIZE Boston Study, an ongoing population-based study of community-dwelling older adults. Each participant’s frailty phenotype (not frail, pre-frail, frail) was determined using the Fried et al. 2001 definition. 551 participants (age 77.9±5.5) stood on a balance platform, with or without concurrently performing serial subtractions. Complexity of balance dynamics over multiple time scales was quantified using multiscale entropy (MSE), a more sensitive measure of physiologic health than variance. Of the participants, 39% were pre-frail and 6% were frail. Baseline MSE was lower with each successive frailty condition (p&lt;0.002). When performing the cognitive task, MSE was lowered similarly in all groups (p&lt;0.001). Frailty was associated with a loss of complexity in the dynamics of postural sway, which may be due to the degradation of integrated postural control networks that enable upright stance. Performance of a dual-task further reduced this complexity. Cognitive distractions during standing may further compromise balance control in frail individuals, which may explain their increased fall risk.


2010 ◽  
Vol 109 (6) ◽  
pp. 1786-1791 ◽  
Author(s):  
Brad Manor ◽  
Madalena D. Costa ◽  
Kun Hu ◽  
Elizabeth Newton ◽  
Olga Starobinets ◽  
...  

The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments ( n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups ( P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity ( P < 0.01). Lower complexity during quiet standing correlated with greater absolute ( R = −0.34, P = 0.002) and percent ( R = −0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.


Author(s):  
Elżbieta Piątek ◽  
Michał Kuczyński ◽  
Bożena Ostrowska

Due to balance deficits that accompany adolescent idiopathic scoliosis (AIS), the potential interaction between activities of daily living and active self-correction movements (ASC) on postural control deserves particular attention. Our purpose was to assess the effects of ASC movements with or without a secondary mental task on postural control in twenty-five girls with AIS. It is a quasi-experimental within-subject design with repeated measures ANOVA. They were measured in four 20-s quiet standing trials on a force plate: no task, ASC, Stroop test, and both. Based on the center-of-pressure (COP) recordings, the COP parameters were computed. The ASC alone had no effect on any of the postural sway measures. Stroop test alone decreased COP speed and increased COP entropy. Performing the ASC movements and Stroop test together increased the COP speed and decreased COP entropy as compared to the baseline data. In conclusion, our results indicate that AIS did not interfere with postural control. The effects of the Stroop test accounted for good capacity of subjects with AIS to take advantage of distracting attentional resources from the posture. However, performing both tasks together exhibited some deficits in postural control, which may suggest the need for therapeutic consultation while engaging in more demanding activities.


2020 ◽  
Vol 76 (1) ◽  
pp. 101-107
Author(s):  
Natalie Ganz ◽  
Eran Gazit ◽  
Nir Giladi ◽  
Robert J Dawe ◽  
Anat Mirelman ◽  
...  

Abstract Background Wearable sensors are increasingly employed to quantify diverse aspects of mobility. We developed novel tandem walking (TW) metrics, validated these measures using data from community-dwelling older adults, and evaluated their association with mobility disability and measures of gait and postural control. Methods Six hundred ninety-three community-dwelling older adults (age: 78.69 ± 7.12 years) wore a 3D accelerometer on their lower back while performing 3 tasks: TW, usual-walking, and quiet standing. Six new measures of TW were extracted from the sensor data along with the clinician’s conventional assessment of TW missteps (ie, trip other loss of balance in which recovery occurred to prevent a fall) and duration. Principal component analysis transformed the 6 new TW measures into 2 summary TW composite factors. Logistic regression models evaluated whether these TW factors were independently associated with mobility disability. Results Both TW factors were moderately related to the TW conventional measures (r &lt; 0.454, p &lt; .001) and were mildly correlated with usual-walking (r &lt; 0.195, p &lt; .001) and standing, postural control (r &lt; 0.119, p &lt; .001). The TW frequency composite factor (p = .008), but not TW complexity composite factor (p = .246), was independently associated with mobility disability in a model controlling for age, sex, body mass index, race, conventional measures of TW, and other measures of gait and postural control. Conclusions Sensor-derived TW metrics expand the characterization of gait and postural control and suggest that they reflect a relatively independent domain of mobility. Further work is needed to determine if these metrics improve risk stratification for other adverse outcomes (eg, falls and incident disability) in older adults.


2002 ◽  
Vol 82 (6) ◽  
pp. 566-577 ◽  
Author(s):  
Matthew Martin ◽  
Mindi Shinberg ◽  
Maggie Kuchibhatla ◽  
Laurie Ray ◽  
James J Carollo ◽  
...  

Abstract Background and Purpose. Initiation of gait requires transitions from relatively stationary positions to stability with movement and from double- to single-limb stances. These are deliberately destabilizing activities that may be difficult for people with early Parkinson disease (PD), even when they have no problems with level walking. We studied differences in postural stability during gait initiation between participants with early and middle stages of PD (characterized by Hoehn and Yahr as stages 1–3) and 2 other groups of participants without PD—older and younger adults. Subjects. The mean ages of the 3 groups of participants were as follows: subjects with PD, 69.3 years (SD=5.7, range=59–78); older subjects without PD, 69.0 years (SD=3.9, range=65–79); and younger subjects without PD, 27.5 (SD=3.9, range=22–35). Methods. A 3-dimensional motion analysis system was used with 2 force platforms to obtain data for center of mass (COM) and center of pressure (COP). The distance between the vertical projections of the COM and the COP (COM–COP distance) was used to reflect postural control during 5 events in gait initiation. Results. By use of multivariate analysis of variance, differences in COM–COP distance were found among the 3 groups. An analysis of variance indicated differences for 4 of the 5 events in gait initiation. A Scheffe post hoc analysis demonstrated differences in gait initiation between the subjects with PD and both groups of subjects without PD (2 events) and between the subjects with PD and the younger subjects without PD (2 events). Discussion and Conclusion. The COM–COP distance relationship was used to measure postural control during the transition from quiet standing to steady-state gait. Differences between groups indicated that individuals with impaired postural control allow less COM–COP distance than do individuals with no known neurologic problems. The method used could prove useful in the development and assessment of interventions to improve ambulation safety and enhance the independence of people with impaired postural control.


Author(s):  
Francesco Palazzo ◽  
Alessandra Nardi ◽  
Niloofar Lamouchideli ◽  
Alfio Caronti ◽  
Anas Alashram ◽  
...  

AbstractIn previous studies, the influence of plantar sensation has been examined using various textured surfaces with different stiffness materials to assess static balance. This study investigated the effects of a Firm Textured Surface (FTS) along with age and sex-related influences on postural control under different visual conditions. Forty subjects (20 elderly, 10 males, mean age 68.30, 10 females, mean age 68.00, and 20 young people, 10 males, mean age 25.45, 10 females, mean age 27.30) participated in this study maintained a quiet standing on FTS, foam and firm surfaces with eyes open and closed. The center of pressure displacement (CoPDISP), CoP velocity (CoPVEL), and sway velocity of the CoP in anteroposterior (AP) and mediolateral (ML) direction (VA/P and VM/L) were measured. FTS was associated with lower postural sway measures in both the groups with eyes open and closed. However, the foam surface showed the worst results in all postural parameters under all experimental conditions. Separate four-way ANOVAs were applied to each dependent variable. The main effects of surface (p < 0.0001), vision (p < 0.0001) and age (p < 0.0001 for CoPDISP, CoPVEL and VA/P; p = 0.0003 for VM/L) were significant in each of the four fitted models. Sex was never significant, either as a main effect or an interaction with other experimental factors. Eyes open were able to reduce the negative effects of the foam surfaces but without vision the proprioceptive sensory system cues of the body state become more important for maintaining balance. A good stimulation with rigid texture should be considered as relief to reduce the physiological-related decline of afferent information with age.


2020 ◽  
Vol 14 (01) ◽  
pp. 14-23
Author(s):  
Ana Carolina de Mello Alves Rodrigues ◽  
Rodolpho Cesar dos Reis Tinini ◽  
Valeska Gatica-Rojas ◽  
Alfredo Mauricio Batista De Paula ◽  
Andre Luis Sena Guimarães ◽  
...  

BACKGROUND: Older adults require special attention during cognitive-motor tasks since automatic postural control is reduced. AIM: To analyze the effect of physical exercise on dual-task processing of healthy older women performing standing balance. METHOD: Sixteen healthy older women were assessed in a quiet standing position with eyes open/closed (single-task, EO, and EC) and with a cognitive task (dual-task, DT) using a Wii Balance Board. All individuals performed training (aerobic, strength, and virtual reality exercises) at moderate effort. Center of pressure (CoP) anteroposterior and mediolateral displacement were analyzed over time pre- and post-training. The Wilcoxon test was used to compare pre- and post-training. RESULTS: Greater variability in CoP was observed pre- compared to post-training. In the DT, there was a significance decrease in post-training variability compared to pre-training (p<0.01). CONCLUSION: Physical exercise programs for older adults may contribute to simultaneously improving motor-cognitive performances, associated with improvement in the divided attention.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Angélica C. Alonso ◽  
Luis Mochizuki ◽  
Natália Mariana Silva Luna ◽  
Sérgio Ayama ◽  
Alexandra Carolina Canonica ◽  
...  

The aim of this study was to evaluate the relation between the sensory and anthropometric variables in the quiet standing.Methods. One hundred individuals (50 men, 50 women; 20–40 years old) participated in this study. For all participants, the body composition (fat tissue, lean mass, bone mineral content, and bone mineral density) and body mass, height, trunk-head length, lower limb length, and upper limb length were measured. The center of pressure was measured during the quiet standing posture, the eyes opened and closed with a force platform. Correlation and regression analysis were run to analyze the relation among body composition, anthropometric data, and postural sway.Results. The correlation analysis showed low relation between postural sway and anthropometric variables. The multiple linear regression analyses showed that the height explained 12% of the mediolateral displacement and 11% of the center of pressure area. The length of the trunk head explained 6% of displacement in the anteroposterior postural sway. During eyes closed condition, the support basis and height explained 18% of mediolateral postural sway.Conclusion. The postural control depends on body composition and dimension. This relation is mediated by the sensory information. The height was the anthropometric variable that most influenced the postural sway.


2020 ◽  
Vol 127 (4) ◽  
pp. 639-650
Author(s):  
Kohtaroh Hagio ◽  
Hiroki Obata ◽  
Kimitaka Nakazawa

The execution of cognitive tasks is known to alter postural sway during standing, but the underlying mechanisms are still debated. This study investigated how performing a mental task modified balance control during standing. We required 15 healthy adult males to maintain an upright stance under conditions of simply relaxing and maintaining normal quiet standing (control condition) or while performing a secondary cognitive task (mental arithmetic). Under each condition, we measured the participants’ center of pressure and used kinematic measurements for a quantitative evaluation of postural control modulation. We calculated the standard deviation of the joint angles (ankle, knee, and hip) and the estimated joint stiffness to measure joint mobility changes in postural control. To estimate the kinematic pattern of covariation among these joints, we used uncontrolled manifold analysis, an assessment of the strength of multijoint coordination. Compared to normal standing, executing the cognitive task while standing led to reduced movements of the ankle and hip joints. There were no significant differences in ankle stiffness or uncontrolled manifold ratios between the conditions. Our results suggest that when performing a secondary cognitive task during standing, neither changes in the modification of stiffness nor the strength of multijoint coordination (both of which preserve the center of mass position) explains changes in postural sway.


Sign in / Sign up

Export Citation Format

Share Document