Neural repetitive firing: a comparative study of membrane properties of crustacean walking leg axons

1975 ◽  
Vol 38 (4) ◽  
pp. 922-932 ◽  
Author(s):  
J. A. Connor

1. Repetitive activity and membrane conductance parameters of crab walking leg axons have been studied in the double sucrose gap. 2. The responses to constant current stimulus could be classified into three catagories; highly repetitive with wide firing frequency range, type I; highly repetitive with narrow frequency range, type II; and nonrepetitive or repetitive to only a limited degree, type III. The minimum firing frequency for type I axons was much greater than for other recording techniques. 3. Voltage-clamp currents in type III axons were qualitatively similar to those of squid or lobster axon. 4. The outward membrane currents of type I and II axons showed a transient phase in addition to the usual delayed current. The magnitude of this transient was a function of both the holding and test voltages. 5. The direction of the transient current reversed in potassium-rich saline. 6. The type I repetitive response in the walking leg axons appears to be generated by the same types of conductance changes that have been demonstrated in molluscan central neurons.

1994 ◽  
Vol 72 (4) ◽  
pp. 1925-1937 ◽  
Author(s):  
W. J. Spain

1. Intracellular recording from cat Betz cells in vitro revealed a strong correlation between the dominant effect of serotonin (5-HT) and the Betz cell subtype in which it occurred. In large Betz cells that show posthyperpolarization excitation (termed PHE cells), 5-HT evoked a long-lasting membrane depolarization, whereas 5-HT evoked an initial hyperpolarization of variable duration in smaller Betz cells that show posthyperpolorization inhibition (termed PHI cells). 2. Voltage-clamp studies revealed that 5-HT caused a depolarizing shift of activation of the cation current Ih, which resulted in the depolarization in PHE cells, whereas the hyperpolarization in PHI cells is caused by an increase in a resting potassium conductance. 3. The effect of 5-HT on firing properties during constant current stimulation also differed consistently in the two types of Betz cells. In PHE cells the initial firing rate increased after 5-HT application, but the steady firing was unaffected. The depolarizing shift of Ih activation caused the increase of initial firing rate. 4. In PHI cells 5-HT caused a decrease in spike frequency adaptation. The decrease in adaptation was caused by a combination of two conductance changes. First, 5-HT caused a slow afterdepolarization in PHI cells that could trigger repetitive firing in the absence of further stimulation. The sADP depended on calcium entry through voltage-gated channels and was associated with a decrease in membrane conductance. Second, 5-HT caused reduction of a slow calcium-dependent potassium current that normally contributes to slow adaptation. 5. In conclusion, the effect of 5-HT on excitability differs systematically in Betz cell subtypes in part because they have different dominant ionic mechanisms that are modulated. If we assume that PHE cells and PHI cells represent fast and slow pyramidal tract (PT) neurons respectively, 5-HT will cause early recruitment of fast PT cells and delay recruitment of slow PT cells during low levels of synaptic excitation.


1995 ◽  
Vol 73 (5) ◽  
pp. 1799-1810 ◽  
Author(s):  
A. Sawczuk ◽  
R. K. Powers ◽  
M. D. Binder

1. We studied spike frequency adaptation of motoneuron discharge in the rat hypoglossal nucleus using a brain stem slice preparation. The characteristics of adaptation in response to long (60 s) injected current steps were qualitatively similar to those observed previously in cat hindlimb motoneurons. The discharge rate typically exhibited a rapid initial decline, characterized by a linear frequency-time relation, followed by a gradual exponential decline that continued for the duration of current injection. However, a more systematic, quantitative analysis of the data revealed that there were often three distinct phases of the adaptation rather than two. 2. The three phases of adaptation (initial, early, and late) were present in at least one 60-s trial of repetitive firing in all but a small number of motoneurons. Initial adaptation was limited to the first few spikes except in a few trials (7%) in which there was no initial adaptation. The time course of the subsequent decline in rate could be adequately described by a single-exponential function in about half of the trials (48%). In the remaining trials this subsequent decline in frequency was better described as the sum of two exponential functions: an early phase, lasting < 2 s, and a late phase, which lasted for the duration of the discharge period. 3. The magnitude of initial adaptation was correlated with the initial firing frequency (i.e., the reciprocal of the 1st interspike interval). The magnitudes of the early and late phases of adaptation were correlated with the firing frequency reached at the end of initial adaptation. Neither the magnitudes nor the time courses of the three phases were correlated with other membrane properties such as input resistance, rheobase, or repetitive firing threshold. 4. The slope of the frequency-current (f-I) curve was steeper in the initial phase (first 2-5 spikes) than in either the early (< 2 s) or late (> 2 s) phases of adaptation as previously reported by other investigators. In the absence of early adaptation, a steady state for the f-I slope was reached by 0.7-1 s, the time typically reported in studies of repetitive discharge. However, when early adaptation was present (50% of the trials), a steady-state value for the f-I slope was not reached until the cell had discharged for > 1 s. 5. To characterize the time course of firing rate recovery from the adaptive processes, the current was turned off for periods of < or = 10 s during the course of a 60-s trial.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 90 (1) ◽  
pp. 291-299 ◽  
Author(s):  
Jianli Li ◽  
Martha E. Bickford ◽  
William Guido

It has been proposed that the thalamus is composed of at least two types of nuclei. First-order relay nuclei transmit signals from the periphery to the cortex while higher order nuclei may route information from one cortical area to another. Although much is known about the functional properties of relay neurons in first-order nuclei, little is known about relay neurons belonging to higher-order nuclei. We investigated the electrophysiological properties of relay cells in a higher-order thalamic nucleus using in vitro intracellular recordings from thalamic slices of the rat's lateral posterior nucleus (LPN). We found neurons of the LPN possess many of the same membrane properties as first-order relay neurons. These included low-threshold calcium spikes ( IT) and burst firing, a mixed cation conductance ( IH) that prevented membrane hyperpolarization, and a transient K+ conductance that delayed spike firing ( IA). The repetitive firing characteristics of LPN neurons were more distinct. One group of cells, located in the more caudal regions of the LPN responded to depolarizing current pulses with a train of action potentials or in a regular spiking (RS) mode. This form of firing showed a steep but highly linear increase in firing frequency with increasing levels of membrane depolarization. Another group of cells, located in the more rostral regions of the LPN, responded to depolarizing current pulses with clusters of high-frequency bursts or in a clustered spiking (CS) mode. The overall firing frequency rose nonlinearly with membrane depolarization, but the frequency of a given burst remained relatively constant. The caudal LPN receives input from the superior colliculus, whereas the rostral LPN receives input from layers V and VI of the visual cortex. Thus the RS and CS cells may be driven by subcortical and cortical inputs respectively, and the distinct temporal properties of their response modes may be a necessary component of the LPN circuitry.


1992 ◽  
Vol 68 (4) ◽  
pp. 1359-1372 ◽  
Author(s):  
A. Kamondi ◽  
J. A. Williams ◽  
B. Hutcheon ◽  
P. B. Reiner

1. The whole-cell patch-clamp technique was used to study the membrane properties of identified cholinergic and noncholinergic laterodorsal tegmental neurons in slices of rat brain maintained in vitro. 2. On the basis of their expression of the transient outward potassium current IA and the transient inward calcium current IT, three classes of neurons were observed: type I neurons exhibited a large IT; type II neurons exhibited a prominent IA; and type III neurons exhibited both IA and IT. 3. Combining intracellular deposition of biocytin with NADPH diaphorase histochemistry revealed that the vast majority of type III neurons were cholinergic, whereas only a minority of type I and type II neurons were cholinergic. Thus mesopontine cholinergic neurons possess intrinsic ionic currents capable of inducing burst firing. 4. Delineation of the intrinsic membrane properties of identified mesopontine cholinergic neurons, in concert with recent results regarding the responses of these neurons to neurotransmitter agents, has led us to present a unifying and mechanistic hypothesis of brain stem cholinergic function in the control of behavioral states.


1999 ◽  
Vol 82 (6) ◽  
pp. 3434-3457 ◽  
Author(s):  
Jiang Ding ◽  
Thane E. Benson ◽  
Herbert F. Voigt

In an effort to establish relationships between cell physiology and morphology in the dorsal cochlear nucleus (DCN), intracellular single-unit recording and marking experiments were conducted on decerebrate gerbils using horseradish peroxidase (HRP)- or neurobiotin-filled micropipettes. Intracellular responses to acoustic (tone and broadband noise bursts) and electric current-pulse stimuli were recorded and associated with cell morphology. Units were classified according to the response map scheme (type I to type V). Results from 19 identified neurons, including 13 fusiform cells, 2 giant cells, and 4 cartwheel cells, reveal correlations between cell morphology of these neurons and their acoustic responses. Most fusiform cells (8/13) are associated with type III unit response properties. A subset of fusiform cells was type I/III units (2), type III-i units (2), and a type IV-T unit. The giant cells were associated with type IV-i unit response properties. Cartwheel cells all had weak acoustic responses that were difficult to classify. Some measures of membrane properties also were correlated with cell morphology but to a lesser degree. Giant cells and all but one fusiform cell fired only simple action potentials (APs), whereas all cartwheel cells discharged complex APs. Giant and fusiform cells all had monotonic rate versus current level curves, whereas cartwheel cells had nonmonotonic curves. This implies that inhibitory acoustic responses, resulting in nonmonotonic rate versus sound level curves, are due to local inhibitory interactions rather than strictly to membrane properties. A complex-spiking fusiform cell with type III unit properties suggests that cartwheel cells are not the only complex-spiking cells in DCN. The diverse response properties of the DCN′s fusiform cells suggests that they are very sensitive to the specific complement of excitatory and inhibitory inputs they receive.


Author(s):  
Walter Francesconi ◽  
Fulvia Berton ◽  
Valentina Olivera-Pasilio ◽  
Joanna Dabrowska

AbstractThe dorsolateral bed nucleus of the stria terminalis (BNSTDL) has high expression of oxytocin receptors, but their role in the modulation of BNSTDL activity remains elusive. BNSTDL contains GABA-ergic neurons classified based on intrinsic membrane properties into three types. Using in vitro patch-clamp and cell-attached recordings in male rats, we demonstrate that oxytocin excites and increases spontaneous firing of Type I, putative BNSTDL interneurons. As a consequence, oxytocin increases the frequency of spontaneous inhibitory post-synaptic currents (sIPSCs) (tetrodotoxin-sensitive) and reduces spontaneous firing of Type II neurons. In contrast, in Type III neurons, oxytocin reduces the amplitude of both sIPSCs and evoked IPSCs, suggesting a direct postsynaptic inhibitory effect. As Type II and Type III are the BNSTDL projection neurons, we present a model of fine-tuned modulation by oxytocin, which selectively excites Type I BNSTDL interneurons and inhibits Type II and Type III output neurons, via an indirect and direct mechanism, respectively.


1987 ◽  
Vol 252 (5) ◽  
pp. H873-H878 ◽  
Author(s):  
N. G. McHale ◽  
J. M. Allen ◽  
H. L. Iggulden

Measurements were made, using the double sucrose-gap technique, of electrical and mechanical responses of bovine lymphatic smooth muscle to constant current pulses. After beta-blockade with 10(-6) M propranolol, stimulation of the alpha-receptors with norepinephrine (5 X 10(-6) M) depolarized the membrane and decreased membrane conductance. The depolarization and decrease in membrane conductance persisted in Li+- and choline-substituted low-Na+ solution, in methanesulfonate-substituted low-Cl- solution, and in Ca2+- free solution containing 1 mM ethyleneglycol-bis(beta-aminoethylether)-N, N'-tetraacetic acid. Tetraethylammonium (10 mM) did not itself affect membrane resistance nor did it block the increase in resistance due to norepinephrine. In contrast, cesium (10 mM) increased membrane resistance and prevented norepinephrine from increasing this further. As well as these effects on membrane resistance, norepinephrine (5 X 10(-6) M) increased the duration of the action potential, and this was accompanied by an increased force of contraction. Tetraethylammonium prolonged the action-potential plateau and potentiated norepinephrine's effect. These results suggest that norepinephrine is likely to increase the efficiency of lymphatic pumping due to both its positive inotropic effect and the improved safety margin for propagation resulting from the increase in membrane resistance. The latter effect may be due to the suppression of an outward K+ current.


Author(s):  
E.M. Kuhn ◽  
K.D. Marenus ◽  
M. Beer

Fibers composed of different types of collagen cannot be differentiated by conventional electron microscopic stains. We are developing staining procedures aimed at identifying collagen fibers of different types.Pt(Gly-L-Met)Cl binds specifically to sulfur-containing amino acids. Different collagens have methionine (met) residues at somewhat different positions. A good correspondence has been reported between known met positions and Pt(GLM) bands in rat Type I SLS (collagen aggregates in which molecules lie adjacent to each other in exact register). We have confirmed this relationship in Type III collagen SLS (Fig. 1).


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Sign in / Sign up

Export Citation Format

Share Document