Jaw muscle afferent firing during an isotonic jaw-positioning task in the monkey

1983 ◽  
Vol 50 (1) ◽  
pp. 61-73 ◽  
Author(s):  
C. R. Larson ◽  
D. V. Finocchio ◽  
A. Smith ◽  
E. S. Luschei

The activity of jaw muscle receptors was studied by recording neurons in the mesencephalic nucleus of the trigeminal nerve in monkeys trained to control the position and movement of their mandible. Jaw position was measured by a weighted lever resting on the mandibular incisors. The force required to maintain the position of the lever was varied; in most cases it was either 25 or 360 g. Firing rates of neurons were related to stationary mandibular positions and to the velocity of movements during intervals when the movement velocity was constant. Of 49 neurons studied in detail, 21 fired at rates that were consistently and linearly related to static incisal openings. This static position sensitivity was typically about 5 spikes/mm of incisal opening. Most position-sensitive neurons fired at higher rates during opening movements and at lower rates during closing movements than would be accounted for by their position sensitivity. This sensitivity to the velocity of movement was not linear, however; slow closing movements sometimes did not produce a decrease in firing rate, and an actual increase during muscle shortening was seen in a few instances. The position sensitivity of eight neurons was evaluated during different loading conditions; in no case did it change substantially. Of the remaining 28 neurons, 26 fired at high rates during all opening movements and either stopped firing or fired at low, sporadic rates during closing movements. The static position sensitivity of these neurons was weak and variable both within and between neurons. The velocity sensitivity of these stretch-sensitive neurons was very nonlinear. Except for a range of slow movements (+/- 5 mm/s), the firing rate was maximal (200 spikes/s or higher) for most opening movements and zero for most closing movements. Maximal firing rates were higher when the loads being moved were increased from 25 to 360 g. The majority of position-sensitive neurons exhibited a large interspike-interval variability at wide incisal opening. In most of these neurons, this interspike-interval variability was periodic, usually at a rate of about 10 periods/s, and took the form of "saw-tooth" modulation on a record of instantaneous firing rate. Neurons that exhibited this modulation in a very prominent form also exhibited, in many instances, a substantial increase in firing rate during closing jaw movements.

1984 ◽  
Vol 52 (2) ◽  
pp. 264-277 ◽  
Author(s):  
C. E. Stafstrom ◽  
P. C. Schwindt ◽  
W. E. Crill

Input-output relations of large neurons from layer V of cat sensorimotor cortex were studied in an in vitro slice preparation using steps and ramps of intracellularly injected current. Depolarization attained during the interspike interval (ISI) was compared to the voltage levels required to activate a previously described (29) persistent sodium current (INaP). INaP was studied using a single-electrode voltage clamp in the same cells tested for firing behavior. Following an injected current step, firing rate declined smoothly to a steady level with a time course that was approximately exponential in most cells (tau, 9-43 ms). In most cells, the relation between firing rate and injected current (f-I relation) consisted of two linear segments, both for adapted, steady firing and for early intervals during adaptation. The slope of the steeper, initial (or sole) linear segment of the f-I curve averaged 26.2 Hz/nA during steady firing and was steeper when plotted for early interspike intervals. The variation of the depolarization at which spike initiation occurred (firing level) and the membrane potential between rhythmic spikes was examined during adaptation and steady firing. In most cells, firing level rose rapidly during a rhythmic train to a steady value. The steady firing level attained remained unchanged over a wide range of steady firing rates. Nevertheless, the mean depolarization during the interspike interval (V) increased approximately linearly with steady firing rate. Even at the slowest firing rates, V is sufficient to activate INaP. The use of injected current ramps demonstrated that neocortical cells were sensitive to rate of change of stimulus current (dI/dt) as well as its amplitude (I). The use of ramps followed by steady currents demonstrated that the repetitive response lagged behind changes in stimulus parameters and did not reach a steady state even during slow ramps; i.e., the response depended on time as well as on I and dI/dt. Instantaneous firing rate during the ramp increased linearly with time for a wide range of ramp slopes (dI/dt). The instantaneous firing rate of early interspike intervals was also linearly related to ramp slope for small ramp slopes. In spite of these linear relationships, quantitative analysis indicated that firing rate during ramp stimulation cannot, in general, be described by a simple linear combination of separate amplitude- and rate-dependent terms. The repetitive firing properties of the in vitro neurons are compared to those of in vivo neocortical neurons and other cell types.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Eslam Mounier ◽  
Bassem Abdullah ◽  
Hani Mahdi ◽  
Seif Eldawlatly

AbstractThe Lateral Geniculate Nucleus (LGN) represents one of the major processing sites along the visual pathway. Despite its crucial role in processing visual information and its utility as one target for recently developed visual prostheses, it is much less studied compared to the retina and the visual cortex. In this paper, we introduce a deep learning encoder to predict LGN neuronal firing in response to different visual stimulation patterns. The encoder comprises a deep Convolutional Neural Network (CNN) that incorporates visual stimulus spatiotemporal representation in addition to LGN neuronal firing history to predict the response of LGN neurons. Extracellular activity was recorded in vivo using multi-electrode arrays from single units in the LGN in 12 anesthetized rats with a total neuronal population of 150 units. Neural activity was recorded in response to single-pixel, checkerboard and geometrical shapes visual stimulation patterns. Extracted firing rates and the corresponding stimulation patterns were used to train the model. The performance of the model was assessed using different testing data sets and different firing rate windows. An overall mean correlation coefficient between the actual and the predicted firing rates of 0.57 and 0.7 was achieved for the 10 ms and the 50 ms firing rate windows, respectively. Results demonstrate that the model is robust to variability in the spatiotemporal properties of the recorded neurons outperforming other examined models including the state-of-the-art Generalized Linear Model (GLM). The results indicate the potential of deep convolutional neural networks as viable models of LGN firing.


1986 ◽  
Vol 56 (2) ◽  
pp. 261-286 ◽  
Author(s):  
W. S. Rhode ◽  
P. H. Smith

Physiological response properties of neurons in the ventral cochlear nucleus have a variety of features that are substantially different from the stereotypical auditory nerve responses that serve as the principal source of activation for these neurons. These emergent features are the result of the varying distribution of auditory nerve inputs on the soma and dendrites of the various cell types within the nucleus; the intrinsic membrane characteristics of the various cell types causing different responses to the same input in different cell types; and secondary excitatory and inhibitory inputs to different cell types. Well-isolated units were recorded with high-impedance glass microelectrodes, both intracellularly and extracellularly. Units were characterized by their temporal response to short tones, rate vs. intensity relation, and response areas. The principal response patterns were onset, chopper, and primary-like. Onset units are characterized by a well-timed first spike in response to tones at the characteristic frequency. For frequencies less than 1 kHz, onset units can entrain to the stimulus frequency with greater precision than their auditory nerve inputs. This implies that onset units receive converging inputs from a number of auditory nerve fibers. Onset units are divided into three subcategories, OC, OL, and OI. OC units have extraordinarily wide dynamic ranges and low-frequency selectivity. Some are capable of sustaining firing rates of 800 spikes/s at high intensities. They have the smallest standard deviation and coefficient of variation of the first spike latency of any cells in the cochlear nuclei. OC units are candidates for encoding intensity. OI and OL units differ from OC units in that they have dynamic ranges and frequency selectivity ranges much like those of auditory nerve fibers. They differ from one another in their steady-state firing rates; OI units fire mainly at the onset of a tone. OI units also differ from OL units in that they prefer frequency sweeps in the low to high direction. Primary-like-with-notch (PLN) units also respond to tones with a well-timed first spike. They differ from onset cells in that the onset peak is not always as precise as the spontaneous rate is higher. A comparison of spontaneous firing rate and saturation firing rate of PLN units with auditory nerve fibers suggest that PLN units receive one to four auditory nerve fiber inputs. Chopper units fire in a sustained regular manner when they are excited by sound.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 88 (2) ◽  
pp. 751-760 ◽  
Author(s):  
I. Phanachet ◽  
T. Whittle ◽  
K. Wanigaratne ◽  
G. M. Murray

The precise function of the inferior head of the human lateral pterygoid muscle (IHLP) is unclear. The aim of this study was to clarify the normal function of the IHLP. The hypothesis was that an important function of the IHLP is the generation and fine control of horizontal (i.e., anteroposterior and mediolateral) jaw movements. The activities of 50 single motor units (SMUs) were recorded from IHLP (14 subjects) during two- or three-step contralateral movement ( n = 36) and/or protrusion ( n = 33). Most recording sites were identified by computer tomography. There was a statistically significant overall increase in firing rate as the magnitude of jaw displacement increased between the holding phases (range of increments: 0.3–1.6 mm). The firing rates during the dynamic phases for each unit were significantly greater than those during the previous holding phases but less than those during the subsequent holding phases. For the contralateral step task at the intermediate rate, the cross-correlation coefficients between jaw displacement in the mediolateral axis and the mean firing rate of each unit ranged from r = 0.29 to 0.77; mean ± SD; r = 0.49 ± 0.13 (protrusive step task: r = 0.12–0.74, r = 0.44 ± 0.14 for correlation with anterior–posterior axis). The correlation coefficients at the fast rate during the contralateral step task and the protrusive step task were significantly higher than those at the slow rate. The firing rate change of the SMUs per unit displacement between holding phases was significantly greater for the lower-threshold than for the higher-threshold units during contralateral movement and protrusion. After dividing IHLP into four regions, the SMUs recorded in the superior part exhibited significantly greater mean firing rate changes per unit displacement during protrusion than for the SMUs recorded in the inferior part. Significantly fewer units were related to the protrusive task in the superior–medial part. These data support previously proposed notions of functional heterogeneity within IHLP. The present findings provide further evidence for an involvement of the IHLP in the generation and fine control of horizontal jaw movements.


1999 ◽  
Vol 82 (1) ◽  
pp. 188-201 ◽  
Author(s):  
Zhongzeng Li ◽  
Kendall F. Morris ◽  
David M. Baekey ◽  
Roger Shannon ◽  
Bruce G. Lindsey

This study addresses the hypothesis that multiple sensory systems, each capable of reflexly altering breathing, jointly influence neurons of the brain stem respiratory network. Carotid chemoreceptors, baroreceptors, and foot pad nociceptors were stimulated sequentially in 33 Dial-urethan–anesthetized or decerebrate vagotomized adult cats. Neuronal impulses were monitored with microelectrode arrays in the rostral and caudal ventral respiratory group (VRG), nucleus tractus solitarius (NTS), and n. raphe obscurus. Efferent phrenic nerve activity was recorded. Spike trains of 889 neurons were analyzed with cycle-triggered histograms and tested for respiratory-modulated firing rates. Responses to stimulus protocols were assessed with peristimulus time and cumulative sum histograms. Cross-correlation analysis was used to test for nonrandom temporal relationships between spike trains. Spike-triggered averages of efferent phrenic activity and antidromic stimulation methods provided evidence for functional associations of bulbar neurons with phrenic motoneurons. Spike train cross-correlograms were calculated for 6,471 pairs of neurons. Significant correlogram features were detected for 425 pairs, including 189 primary central peaks or troughs, 156 offset peaks or troughs, and 80 pairs with multiple peaks and troughs. The results provide evidence that correlational medullary assemblies include neurons with overlapping memberships in groups responsive to different sets of sensory modalities. The data suggest and support several hypotheses concerning cooperative relationships that modulate the respiratory motor pattern. 1) Neurons responsive to a single tested modality promote or limit changes in firing rate of multimodal target neurons. 2) Multimodal neurons contribute to changes in firing rate of neurons responsive to a single tested modality. 3) Multimodal neurons may promote responses during stimulation of one modality and “limit” changes in firing rates during stimulation of another sensory modality. 4) Caudal VRG inspiratory neurons have inhibitory connections that provide negative feedback regulation of inspiratory drive and phase duration.


1999 ◽  
Vol 82 (5) ◽  
pp. 2612-2632 ◽  
Author(s):  
Pierre A. Sylvestre ◽  
Kathleen E. Cullen

The mechanics of the eyeball and its surrounding tissues, which together form the oculomotor plant, have been shown to be the same for smooth pursuit and saccadic eye movements. Hence it was postulated that similar signals would be carried by motoneurons during slow and rapid eye movements. In the present study, we directly addressed this proposal by determining which eye movement–based models best describe the discharge dynamics of primate abducens neurons during a variety of eye movement behaviors. We first characterized abducens neuron spike trains, as has been classically done, during fixation and sinusoidal smooth pursuit. We then systematically analyzed the discharge dynamics of abducens neurons during and following saccades, during step-ramp pursuit and during high velocity slow-phase vestibular nystagmus. We found that the commonly utilized first-order description of abducens neuron firing rates (FR = b + kE + rE˙, where FR is firing rate, E and E˙ are eye position and velocity, respectively, and b, k, and r are constants) provided an adequate model of neuronal activity during saccades, smooth pursuit, and slow phase vestibular nystagmus. However, the use of a second-order model, which included an exponentially decaying term or “slide” (FR = b + kE + rE˙ + uË − c[Formula: see text]), notably improved our ability to describe neuronal activity when the eye was moving and also enabled us to model abducens neuron discharges during the postsaccadic interval. We also found that, for a given model, a single set of parameters could not be used to describe neuronal firing rates during both slow and rapid eye movements. Specifically, the eye velocity and position coefficients ( r and k in the above models, respectively) consistently decreased as a function of the mean (and peak) eye velocity that was generated. In contrast, the bias ( b, firing rate when looking straight ahead) invariably increased with eye velocity. Although these trends are likely to reflect, in part, nonlinearities that are intrinsic to the extraocular muscles, we propose that these results can also be explained by considering the time-varying resistance to movement that is generated by the antagonist muscle. We conclude that to create realistic and meaningful models of the neural control of horizontal eye movements, it is essential to consider the activation of the antagonist, as well as agonist motoneuron pools.


2006 ◽  
Vol 96 (6) ◽  
pp. 3257-3265 ◽  
Author(s):  
Ekaterina Likhtik ◽  
Joe Guillaume Pelletier ◽  
Andrei T. Popescu ◽  
Denis Paré

This study tested whether firing rate and spike shape could be used to distinguish projection cells from interneurons in extracellular recordings of basolateral amygdala (BLA) neurons. To this end, we recorded BLA neurons in isoflurane-anesthetized animals with tungsten microelectrodes. Projection cells were identified by antidromic activation from cortical projection sites of the BLA. Although most projection cells fired spontaneously at low rates (<1 Hz), an important subset fired at higher rates (up to 6.8 Hz). In fact, the distribution of firing rates in projection cells and unidentified BLA neurons overlapped extensively, even though the latter cell group presumably contains a higher proportion of interneurons. The only difference between the two distributions was a small subset (5.1%) of unidentified neurons with unusually high firing rates (9–16 Hz). Similarly, distributions of spike durations in both cell groups were indistinguishable, although most of the fast-firing neurons had spike durations at the low end of the distribution. However, we observed that spike durations depended on the exact position of the electrode with respect to the recorded cell, varying by as much as 0.7 ms. Thus neither firing rate nor spike waveform allowed for unequivocal separation of projection cells from interneurons. Nevertheless, we propose the use of two firing rate cutoffs to obtain relatively pure samples of projection cells and interneurons: ≤1 Hz for projection cells and ≥7 Hz for fast-spiking interneurons. Supplemented with spike-duration cutoffs of ≥0.7 ms for projection cells and ≤0.5 ms for interneurons, this approach should keep instances of misclassifications to a minimum.


1998 ◽  
Vol 201 (24) ◽  
pp. 3419-3424 ◽  
Author(s):  
J. H. Fullard ◽  
E. Forrest ◽  
A. Surlykke

It has been proposed that the most sensitive auditory receptor cell (A1)in the two-celled ears of certain noctuoid moths is inhibited by its partner, the A2 cell, at high stimulus intensities. We used the single-celled ears of notodontid moths, also noctuoids, to test this hypothesis. The A1 cells of all but one of the moths tested exhibited non-monotonic firing rates, with reduced firing rates at high stimulus intensities and showing no relationship to the firing rate of the only other receptor, the non-auditory B cell. These results challenge the peripheral interaction hypothesis for A1 firing patterns in two-celled moth ears. An examination of notodontid A1 adaptation rates and laser vibrometry results suggests that receptor adaptation and tympanal motion non-linearity are more likely explanations for the non-monotonic receptor firing observed in both single- and multi-celled moth ears.


1992 ◽  
Vol 263 (3) ◽  
pp. R679-R684
Author(s):  
J. B. Dean ◽  
J. A. Boulant

Thermoregulatory responses may be delayed in onset and offset by several minutes after changes in hypothalamic temperature. Our preceding study found neurons that displayed delayed firing rate responses during clamped thermal stimulation in remote regions of rat diencephalic tissue slices. The present study looked for similar delayed firing rate responses during clamped (1.5-10 min) changes in each neuron's local temperature. Of 26 neurons tested with clamped thermal stimulation, six (i.e., 23%) showed delayed responses, with on-latencies of 1.0-7.8 min. These neurons rarely showed off-latencies, and the delayed response was not eliminated by synaptic blockade. The on-latencies and ranges of local thermosensitivity were similar to delayed neuronal responses to remote temperature; however, remote-sensitive neurons displayed off-latencies, higher firing rates at 37 degrees C, and greater sensitivity to thermal stimulation. Our findings suggest that delayed thermosensitivity is an intrinsic property of certain neurons and may initiate more elaborate or prolonged delayed responses in synaptically connected diencephalic networks. These networks could explain the delayed thermoregulatory responses observed during hypothalamic thermal stimulation.


1982 ◽  
Vol 48 (4) ◽  
pp. 875-890 ◽  
Author(s):  
P. C. Schwindt ◽  
W. E. Crill

1. The rhythmic firing properties of cat lumbar motoneurons were determined by intracellular injection of constant-current pulses. The activation thresholds of various membrane current components were subsequently determined in the same neurons using the technique of somatic voltage clamp. Voltage steps were employed that traversed the same voltage range as the membrane potential between rhythmic spikes (the "pacemaker potential"). 2. At fast firing rates (e.g., secondary-range firing), the pacemaker potential remains entirely within the range of voltages over which a previously described (42), persistent, inward, calcium current (Ii) is activated during voltage clamp. Thus Ii is tonically activated and counters the repolarizing, outward, potassium currents during fast firing. At slower firing rates (e.g., primary-range firing), the pacemaker potential only partially enters the voltage range where Ii is activated, and this voltage range may not be entered at all the slowest firing rates. Cells in which Ii deteriorated could not be made to fire at fast rates although they could still fire at slow rates. 3. The use of two independent intracellular microelectrodes allowed accurate measurement of the somatic voltage at which spike initiation occurred ("firing level"). In all cells, firing level increased significantly as steady firing rate increased. During a given injected-current pulse, firing level also exhibited a more moderate variation with time. 4. The variation in firing level was caused by the accommodative properties of the axon initial segment. Except at the fastest firing rates, firing level occurs at less depolarized voltages than the somatic sodium conductance threshold. In addition, somatic sodium current shows minimal inactivation over the voltage range traversed by the pacemaker potentials during slower firing rates. An inactivation of about 50% is attained during the maximum firing rate. 5. We discuss the ways by which Ii activation and thr progressive rise in firing level influence motoneuron rhythmic firing. We propose that the basic role of Ii is to aid in maintaining a linear f-I curve, especially at faster firing rates. We hypothesize that the relative balance between persistent inward and outward ionic currents plays a major role in determining the f-I curve slope among different neurons and between primary- and secondary-range firing of cat lumbar motoneurons.


Sign in / Sign up

Export Citation Format

Share Document