scholarly journals Organization of auditory cortex in the albino rat: sound frequency

1988 ◽  
Vol 59 (5) ◽  
pp. 1627-1638 ◽  
Author(s):  
S. L. Sally ◽  
J. B. Kelly

1. Responses of neurons in the auditory cortex of the albino rat were examined using microelectrode mapping techniques. Characteristic frequencies were determined for numerous electrode penetrations across the cortical surface in individual animals. A primary auditory area was identified in the posterolateral neocortex that was characterized by short latency responses to tone bursts and tonotopic organization with high frequencies represented rostrally and low frequencies, caudally. Within this area cells with similar characteristic frequencies were aligned in a dorsoventral orientation to form isofrequency contours. 2. Tuning curves obtained from primary auditory cortex were characteristically "V" shaped with Q10's ranging from 0.97 to 28.4. Maximum Q10 values increased monotonically with characteristic frequency (CF). The lowest thresholds at CF closely approximated the behavioral audiogram for the albino rat. Many neurons, however, had CF thresholds well above the behavioral limit. 3. Areas were found dorsal and ventral to the primary auditory cortex in which CF's were clearly discontinuous with the neighboring isofrequency contours. These data suggest the presence of other auditory fields, the detailed characteristics of which have yet to be examined.

1975 ◽  
Vol 38 (2) ◽  
pp. 231-249 ◽  
Author(s):  
M. M. Merzenich ◽  
P. L. Knight ◽  
G. L. Roth

The representation of sound frequency (and of the cochlear partition) within primary auditory cortex has been investigated with use of microelectrode-mapping techniques in a series of 25 anesthetized cats. Among the results were the following: 1) Within vertical penetrations into AI, best frequency and remarkably constant for successively studied neurons across the active middle and deep cortical layers. 2) There is an orderly representation of frequency (and of represented cochlear place) within AI. Frequency is rerepresented across the mediolateral dimension of the field. On an axis perpendicular to this plane of rerepresentation, best-frequency (represented cochlear place) changes as a simple function of cortical location. 3) Any given frequency band (or sector of the cochlear partition) is represented across a belt of cortex of nearly constant width that runs on a nearly straight axis across AI. 4) There is a disproportionately large cortical surface representation of the highest-frequency octaves (basal cochlea) within AI. 5) The primary and secondary field locations were somewhat variable, when referenced to cortical surface landmarks. 6) Data from long penetrations passing down the rostral bank of the posterior ectosylvian sulcus were consistent with the existence of a vertical unit of organization in AI, akin to cortical columns described in primary visual and somatosensory cortex. 7) Responses to tonal stimuli were encountered in fields dorsocaudal, caudal, ventral, and rostral to AI. There is an orderly representation of the cochlea within the field rostal to AI, with a reversal in best frequencies across its border with AI. 8) Physiological definitions of AI boundaries are consistent with their cytoarchitectonic definition. Some of the implications of these findings are discussed.


2010 ◽  
Vol 103 (5) ◽  
pp. 2339-2354 ◽  
Author(s):  
M. Vater ◽  
E. Foeller ◽  
E. C. Mora ◽  
F. Coro ◽  
I. J. Russell ◽  
...  

The primary auditory cortex (AI) of adult Pteronotus parnellii features a foveal representation of the second harmonic constant frequency (CF2) echolocation call component. In the corresponding Doppler-shifted constant frequency (DSCF) area, the 61 kHz range is over-represented for extraction of frequency-shift information in CF2 echoes. To assess to which degree AI postnatal maturation depends on active echolocation or/and reflects ongoing cochlear maturation, cortical neurons were recorded in juveniles up to postnatal day P29, before the bats are capable of active foraging. At P1-2, neurons in posterior AI are tuned sensitively to low frequencies (22–45 dB SPL, 28–35 kHz). Within the prospective DSCF area, neurons had insensitive responses (>60 dB SPL) to frequencies <40 kHz and lacked sensitive tuning curve tips. Up to P10, when bats do not yet actively echolocate, tonotopy is further developed and DSCF neurons respond to frequencies of 51–57 kHz with maximum tuning sharpness ( Q10dB) of 57. Between P11 and 20, the frequency representation in AI includes higher frequencies anterior and dorsal to the DSCF area. More multipeaked neurons (33%) are found than at older age. In the oldest group, DSCF neurons are tuned to frequencies close to 61 kHz with Q10dB values ≤212, and threshold sensitivity, tuning sharpness and cortical latencies are adult-like. The data show that basic aspects of cortical tonotopy are established before the bats actively echolocate. Maturation of tonotopy, increase of tuning sharpness, and upward shift in the characteristic frequency of DSCF neurons appear to strongly reflect cochlear maturation.


2003 ◽  
Vol 90 (4) ◽  
pp. 2660-2675 ◽  
Author(s):  
Jennifer F. Linden ◽  
Robert C. Liu ◽  
Maneesh Sahani ◽  
Christoph E. Schreiner ◽  
Michael M. Merzenich

The mouse is a promising model system for auditory cortex research because of the powerful genetic tools available for manipulating its neural circuitry. Previous studies have identified two tonotopic auditory areas in the mouse—primary auditory cortex (AI) and anterior auditory field (AAF)— but auditory receptive fields in these areas have not yet been described. To establish a foundation for investigating auditory cortical circuitry and plasticity in the mouse, we characterized receptive-field structure in AI and AAF of anesthetized mice using spectrally complex and temporally dynamic stimuli as well as simple tonal stimuli. Spectrotemporal receptive fields (STRFs) were derived from extracellularly recorded responses to complex stimuli, and frequency-intensity tuning curves were constructed from responses to simple tonal stimuli. Both analyses revealed temporal differences between AI and AAF responses: peak latencies and receptive-field durations for STRFs and first-spike latencies for responses to tone bursts were significantly longer in AI than in AAF. Spectral properties of AI and AAF receptive fields were more similar, although STRF bandwidths were slightly broader in AI than in AAF. Finally, in both AI and AAF, a substantial minority of STRFs were spectrotemporally inseparable. The spectrotemporal interaction typically appeared in the form of clearly disjoint excitatory and inhibitory subfields or an obvious spectrotemporal slant in the STRF. These data provide the first detailed description of auditory receptive fields in the mouse and suggest that although neurons in areas AI and AAF share many response characteristics, area AAF may be specialized for faster temporal processing.


2019 ◽  
Author(s):  
Eugenia González-Palomares ◽  
Luciana López-Jury ◽  
Francisco García-Rosales ◽  
Julio C. Hechavarria

SummaryThe auditory midbrain (inferior colliculus, IC) plays an important role in sound processing, acting as hub for acoustic information extraction and for the implementation of fast audio-motor behaviors. IC neurons are topographically organized according to their sound frequency preference: dorsal IC regions encode low frequencies while ventral areas respond best to high frequencies, a type of sensory map defined as tonotopy. Tonotopic maps have been studied extensively using artificial stimuli (pure tones) but our knowledge of how these maps represent information about sequences of natural, spectro-temporally rich sounds is sparse. We studied this question by conducting simultaneous extracellular recordings across IC depths in awake bats (Carollia perspicillata) that listened to sequences of natural communication and echolocation sounds. The hypothesis was that information about these two types of sound streams is represented at different IC depths since they exhibit large differences in spectral composition, i.e. echolocation covers the high frequency portion of the bat soundscape (> 45 kHz), while communication sounds are broadband and carry most power at low frequencies (20-25 kHz). Our results showed that mutual information between neuronal responses and acoustic stimuli, as well as response redundancy in pairs of neurons recorded simultaneously, increase exponentially with IC depth. The latter occurs regardless of the sound type presented to the bats (echolocation or communication). Taken together, our results indicate the existence of mutual information and redundancy maps at the midbrain level whose response cannot be predicted based on the frequency composition of natural sounds and classic neuronal tuning curves.


1997 ◽  
Vol 77 (2) ◽  
pp. 923-943 ◽  
Author(s):  
Michael Brosch ◽  
Christoph E. Schreiner

Brosch, Michael and Christoph E. Schreiner. Time course of forward masking tuning curves in cat primary auditory cortex. J. Neurophysiol. 77: 923–943, 1997. Nonsimultaneous two-tone interactions were studied in the primary auditory cortex of anesthetized cats. Poststimulatory effects of pure tone bursts (masker) on the evoked activity of a fixed tone burst (probe) were investigated. The temporal interval from masker onset to probe onset (stimulus onset asynchrony), masker frequency, and intensity were parametrically varied. For all of the 53 single units and 58 multiple-unit clusters, the neural activity of the probe signal was either inhibited, facilitated, and/or delayed by a limited set of masker stimuli. The stimulus range from which forward inhibition of the probe was induced typically was centered at and had approximately the size of the neuron's excitatory receptive field. This “masking tuning curve” was usually V shaped, i.e., the frequency range of inhibiting masker stimuli increased with the masker intensity. Forward inhibition was induced at the shortest stimulus onset asynchrony between masker and probe. With longer stimulus onset asynchronies, the frequency range of inhibiting maskers gradually became smaller. Recovery from forward inhibition occurred first at the lower- and higher-frequency borders of the masking tuning curve and lasted the longest for frequencies close to the neuron's characteristic frequency. The maximal duration of forward inhibition was measured as the longest period over which reduction of probe responses was observed. It was in the range of 53–430 ms, with an average of 143 ± 71 (SD) ms. Amount, duration and type of forward inhibition were weakly but significantly correlated with “static” neural receptive field properties like characteristic frequency, bandwidth, and latency. For the majority of neurons, the minimal inhibitory masker intensity increased when the stimulus onset asynchrony became longer. In most cases the highest masker intensities induced the longest forward inhibition. A significant number of neurons, however, exhibited longest periods of inhibition after maskers of intermediate intensity. The results show that the ability of cortical cells to respond with an excitatory activity depends on the temporal stimulus context. Neurons can follow higher repetition rates of stimulus sequences when successive stimuli differ in their spectral content. The differential sensitivity to temporal sound sequences within the receptive field of cortical cells as well as across different cells could contribute to the neural processing of temporally structured stimuli like speech and animal vocalizations.


2021 ◽  
Author(s):  
Katherine C. M. Chew ◽  
Vineet Kumar ◽  
Andrew Y. Y. Tan

Tone-evoked synaptic excitation and inhibition are highly correlated in many neurons with V-shaped tuning curves in the primary auditory cortex of pentobarbital-anesthetized rats. In contrast, there is less correlation between spontaneous excitation and inhibition in visual cortex neurons under the same anesthetic conditions. However, it was not known whether the primary auditory cortex resembles visual cortex in having spontaneous excitation and inhibition that is less correlated than tone-evoked excitation and inhibition. Here we report whole-cell voltage-clamp measurements of spontaneous excitation and inhibition in primary auditory cortex neurons of pentobarbital-anesthetized rats. The larger excursions of both spontaneous excitatory and inhibitory currents appeared to consist of distinct events, with the inhibitory event rate typically lower than the excitatory event rate. We use the ratio of the excitatory event rate to the inhibitory event rate, and the assumption that the excitatory and inhibitory synaptic currents can each be reasonably described as a filtered Poisson process, to estimate the maximum spontaneous excitatory-inhibitory correlation for each neuron. In a subset of neurons, we also measured tone-evoked excitation and inhibition. In neurons with V-shaped tuning curves, although tone-evoked excitation and inhibition were highly correlated, the spontaneous inhibitory event rate was typically sufficiently lower than the spontaneous excitatory event rate to indicate a lower excitatory-inhibitory correlation for spontaneous activity than for tone-evoked responses.


2007 ◽  
Vol 98 (5) ◽  
pp. 2933-2942 ◽  
Author(s):  
Kazuo Imaizumi ◽  
Christoph E. Schreiner

Primary sensory cortical areas are characterized by orderly and largely independent representations of several receptive field properties. This is expressed in multiple, spatially overlaying parameter distributions, such as orientation preference, spatial frequency, and ocular dominance maps in the primary visual cortex. In the auditory cortex, two main and presumably independent representational parameters are the center frequency and the frequency extent of spectral tuning curves. Here we demonstrate interactions between cortical tonotopic gradient and spectral bandwidth modules in cat primary auditory cortex (AI). First, the spatial representation of spectral integration is not equally expressed across the whole frequency range in AI. Narrow-bandwidth modules are found only in the mid-frequency region (5–20 kHz). Thus spectral integration properties delineate three frequency regions (<5, 5–20, and >20 kHz) in cat AI. Second, the extent of spectral integration covaries with the local tonotopic gradient in the low- and mid-frequency ranges. Regions with a shallow frequency gradient tend to have narrower spectral integration than those with a steep gradient. These relationships between spectral selectivity and frequency gradient constrain forebrain models of thalamo- and corticocortical convergence and connectivity and may reflect the processing of behaviorally relevant stimulus constellations.


1995 ◽  
Vol 73 (4) ◽  
pp. 1513-1523 ◽  
Author(s):  
N. Kowalski ◽  
H. Versnel ◽  
S. A. Shamma

1. Characteristics of an anterior auditory field (AAF) in the ferret auditory cortex are described in terms of its electrophysiological responses to tonal stimuli and compared with those of primary auditory cortex (AI). Ferrets were barbiturate-anesthetized and tungsten microelectrodes were used to record single-unit responses from both AI and AAF fields. Units in both areas were presented with the same stimulus paradigms and their responses analyzed in the same manner so that a direct comparison of responses was possible. 2. The AAF is located dorsal and rostral to AI on the ectosylvian gyrus and extends into the suprasylvian sulcus rostral to AI. The tonotopicity is organized with high frequencies at the top of the sulcus bordering the high-frequency area of AI, then reversing with lower BFs extending down into the sulcus. AAF contained single units that responded to a frequency range of 0.3-30 kHz. 3. Stimuli consisted of single-tone bursts, two-tone bursts and frequency-modulated (FM) stimuli swept in both directions at various rates. Best frequency (BF) range, rate-level functions at BF, FM directional sensitivity, and variation in asymmetries of response areas were all comparable characteristics between AAF and AI. Responses in both areas were primarily phasic. 4. The characteristics that were different between the two cortical areas were: latency to tone onset, excitatory bandwidth 20 dB above threshold (BW20), and preferred FM rate as parameterized with the centroid (a weighted average of spike counts). The mean latency of AAF units was shorter than in AI (AAF: 16.8 ms, AI: 19.4 ms). BW20 measurements in AAF were typically twice as large as those found in AI (AAF: 2.5 octaves, AI 1.3 octaves). The AI centroid population had a significantly larger standard deviation than the AAF centroid population. 5. We examined the relationship between centroid and BW20 to see whether wider bandwidths were a factor in a unit's ability to detect fast sweeps. There was significant (P < 0.05) linear correlation in AAF but not in AI. In both fields the variance of the centroid population decreased with increasing BW20. BW20 decreased as BF increased for units in both auditory fields.


1986 ◽  
Vol 55 (2) ◽  
pp. 256-271 ◽  
Author(s):  
H. E. Heffner ◽  
R. S. Heffner

The hearing ability of five Japanese macaques (Macaca fuscata) was assessed following two-stage bilateral auditory cortex lesions. The animals were tested using a shock-avoidance procedure with a conditioned-suppression procedure used for comparison in two cases. The animals initially were unable to respond to sound, and the first signs of hearing appeared as late as 13 wk after surgery. Hearing levels improved gradually over time, with maximal recovery reached at 24-35 wk after surgery. Recovery was most pronounced for low frequencies (63-250 Hz) and very high frequencies (32 kHz), which generally returned to normal or near-normal levels. However, the monkeys appeared to have suffered a permanent hearing loss throughout most of their hearing range, especially in the midfrequency range, where they are normally most sensitive. A review of the animal literature reveals little support for the previous view that bilateral auditory cortex lesions have little or no effect on absolute sensitivity in primates and carnivores. Most previous studies did not conduct detailed hearing tests, and those that did often noted a hearing loss. The hearing loss found in monkeys is similar to that noted in human cases following bilateral auditory cortex lesions. The current findings thus provide experimental verification of the clinical phenomenon of cortical deafness.


1991 ◽  
Vol 65 (5) ◽  
pp. 1207-1226 ◽  
Author(s):  
M. L. Sutter ◽  
C. E. Schreiner

1. The physiology and topography of single neuron responses along the isofrequency domain of the middle- and high-frequency portions [characteristic frequencies (CFs) greater than 4 kHz] of the primary auditory cortex (AI) were investigated in the barbiturate-anesthetized cat. Single neurons were recorded at several locations along the extent of isofrequency contours, defined from initial multiple-unit mapping. For each neuron a high-resolution excitatory tuning curve was determined, and for some neurons high-resolution two-tone tuning curves were recorded to measure inhibitory/suppressive areas. 2. A physiologically distinct population of neurons was found in the dorsal part of cat AI. These neurons exhibited two or three distinct excitatory frequency ranges, whereas most neurons in AI responded with excitation to a single narrow frequency range. These were called multipeaked neurons because of the shape of their tuning curves. At frequencies between the excitatory regions, the multipeaked neurons were inhibited or unresponsive. 3. Multipeaked neurons exhibited several distinct threshold minima in their frequency tuning curves. Most of the multipeaked neurons (88%) displayed two frequency minima, whereas the rest exhibited three minima. 4. The frequency separation between threshold minima was less than 1 octave in 71% of the double-peaked neurons recorded. Occasionally, the frequency peaks of these neurons closely corresponded to a response to second and third harmonics without a response to the fundamental frequency. 5. Multipeaked neurons exhibited a wide range of total bandwidths (highest excitatory frequency minus lowest excitatory frequency expressed in octaves). Bandwidths of the isolated peaks within the same neuron were also quite variable. 6. Response latencies to tones with frequencies within each peak of a multipeaked neuron could vary considerably. In 71% (17) of the neurons, tones corresponding to the high-frequency peak (CFh) elicited a longer response latency (greater than 4 ms) than those corresponding to the low-frequency peak (CF1). 7. Inhibitory/suppressive bands, as demonstrated with a two-tone paradigm, were often present between the peaks. Typically, neurons with excitatory peaks of similar response latencies showed an inhibitory band located between the peaks. 8. Ninety percent of the topographically localized multipeaked neurons were in the dorsal part of AI (greater than 1 mm dorsal to the maximum in the sharpness-of-tuning map). Although these neurons were restricted to dorsal AI, only 35% of neurons in this region were multipeaked. 9. Multipeaked neurons could show decreased response latencies and thresholds to two-tone combinations.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document