Systematic Changes in Directional Tuning of Motor Cortex Cell Activity With Hand Location in the Workspace During Generation of Static Isometric Forces in Constant Spatial Directions

1997 ◽  
Vol 78 (2) ◽  
pp. 1170-1174 ◽  
Author(s):  
Lauren E. Sergio ◽  
John F. Kalaska

Sergio, Lauren E. and John F. Kalaska. Systematic changes in directional tuning of motor cortex cell activity with hand location in the workspace during generation of static isometric forces in constant spatial directions. J. Neurophysiol. 78: 1170–1174, 1997. We examined the activity of 46 proximal-arm-related cells in the primary motor cortex (MI) during a task in which a monkey uses the arm to exert isometric forces at the hand in constant spatial directions while the hand is in one of nine different spatial locations on a plane. The discharge rate of all 46 cells was significantly affected by both hand location and by the direction of static force during the final static-force phase of the task. In addition, all cells showed a significant interaction between force direction and hand location. That is, there was a significant modulation in the relationship between cell activity and the direction of exerted force as a function of hand location. For many cells, this modulation was expressed in part as a systematic arclike shift in the cell's directional tuning at the different hand locations, even though the direction of static force output at the hand remained constant. These effects of hand location in the workspace indicate that the discharge of single MI cells does not covary exclusively with the level and direction of force output at the hand. Sixteen proximal-arm-related muscles showed similar effects in the task, reflecting their dependence on various mechanical factors that varied with hand location. The parallel changes found for both MI cell activity and muscle activity for static force production at different hand locations are further evidence that MI contributes to the transformation between extrinsic and intrinsic representations of limb movement.

2003 ◽  
Vol 89 (1) ◽  
pp. 212-228 ◽  
Author(s):  
Lauren E. Sergio ◽  
John F. Kalaska

We report here the activity of 96 cells in primate primary motor cortex (MI) during exertion of isometric forces at the hand in constant spatial directions, while the hand was at five to nine different spatial locations on a plane. The discharge of nearly all cells varied significantly with both hand location and the direction of isometric force before and during force-ramp generation as well as during static force-hold. In addition, nearly all cells displayed changes in the variation of their activity with force direction at different hand locations. This change in relationship was often expressed in part as a change in the cell's directional tuning at different hand locations. Cell directional tuning tended to shift systematically with hand location even though the direction of static force output at the hand remained constant. These directional effects were less pronounced before the onset of force output than after force onset. Cells also often showed planar modulations of discharge level with hand location. Sixteen proximal arm muscles showed similar effects, reflecting how hand location-dependent biomechanical factors altered their task-related activity. These findings indicate that MI single-cell activity does not covary exclusively with the level and direction of net force output at the hand and provides further evidence that MI contributes to the transformation between extrinsic and intrinsic representations of motor output during isometric force production.


2011 ◽  
Vol 106 (5) ◽  
pp. 2688-2697 ◽  
Author(s):  
Francesco Negro ◽  
Dario Farina

Oscillations in the primary motor cortex are transmitted through the corticospinal tract to the motoneuron pool. This pathway is believed to produce an effective and direct command from the motor cortex to the spinal motoneurons for the modulation of the force output. In this study, we used a computational model of a population of motoneurons to investigate the factors that can influence the transmission of the cortical input to the output of motoneurons, since it can be quantified by coherence analysis. The simulations demonstrated that, despite the nonlinearity of the motoneurons, oscillations present in the cortical input are transmitted to the output of the motoneuron pool at the same frequency. However, the interference introduced by the nonlinearity of the system increases the variability of the oscillations in output, introducing spectral lines whose frequency depends on the input frequencies and the motoneuron discharge rates. Moreover, an additional source of synaptic input common to all motoneurons but independent from the corticospinal component decorrelates the cortical input and motoneuron output and, thus, decreases the magnitude of the estimated coherence, even if the effective cortical drive does not change. These results indicate that the corticospinal input can effectively be sampled by a small population of motoneurons. However, the transmission of a corticospinal drive to the motoneuron pool is influenced by the nonlinearity of the spiking processes of the active motoneurons and by synaptic inputs common to the motoneuron population but independent from the cortical input.


2001 ◽  
Vol 13 (3) ◽  
pp. 319-331 ◽  
Author(s):  
Daeyeol Lee ◽  
Nicholas L. Port ◽  
Wolfgang Kruse ◽  
Apostolos P. Georgopoulos

Two rhesus monkeys were trained to intercept a moving target at a fixed location with a feedback cursor controlled bya 2-D manipulandum. The direction from which the target appeared, the time from the target onset to its arrival at the interception point, and the target acceleration were randomized for each trial, thus requiring the animal to adjust its movement according to the visual input on a trail-by-trail basis. The two animals adopted different strategies, similar to those identified previously in human subjects. Single-cell activity was recorded from the arm area of the primary motor cortex in these two animals, and the neurons were classified based on the temporal patterns in their activity, using a nonhierarchical cluster analysis. Results of this analysis revealed differences in the complexity and diversity of motor cortical activity between the two animals that paralleled those of behavioral strategies. Most clusters displayed activity closedly related to the kinematics of hand movements. In addition, some clusters displayed patterns of activation that conveyed additional information necessary for successful performance of the task, such as the initial target velocity and the interval between successive submovements, suggesting that such information is represented in selective subpopulations of neurons in the primary motor cortex. These results also suggest that conversion of information about target motion into movement-related signals takes place in a broad network of cortical areas including the primary motor cortex.


2005 ◽  
Vol 94 (4) ◽  
pp. 2353-2378 ◽  
Author(s):  
Lauren E. Sergio ◽  
Catherine Hamel-Pâquet ◽  
John F. Kalaska

We recorded the activity of 132 proximal-arm-related neurons in caudal primary motor cortex (M1) of two monkeys while they generated either isometric forces against a rigid handle or arm movements with a heavy movable handle, in the same eight directions in a horizontal plane. The isometric forces increased in monotonic fashion in the direction of the force target. The forces exerted against the handle in the movement task were more complex, including an initial accelerating force in the direction of movement followed by a transient decelerating force opposite to the direction of movement as the hand approached the target. EMG activity of proximal-arm muscles reflected the difference in task dynamics, showing directional ramplike activity changes in the isometric task and reciprocally tuned “triphasic” patterns in the movement task. The apparent instantaneous directionality of muscle activity, when expressed in hand-centered spatial coordinates, remained relatively stable during the isometric ramps but often showed a large transient shift during deceleration of the arm movements. Single-neuron and population-level activity in M1 showed similar task-dependent changes in temporal pattern and instantaneous directionality. The momentary dissociation of the directionality of neuronal discharge and movement kinematics during deceleration indicated that the activity of many arm-related M1 neurons is not coupled only to the direction and speed of hand motion. These results also demonstrate that population-level signals reflecting the dynamics of motor tasks and of interactions with objects in the environment are available in caudal M1. This task-dynamics signal could greatly enhance the performance capabilities of neuroprosthetic controllers.


2001 ◽  
Vol 86 (4) ◽  
pp. 2102-2108 ◽  
Author(s):  
D. William Cabel ◽  
Paul Cisek ◽  
Stephen H. Scott

Whole-arm motor tasks performed by nonhuman primates have become a popular paradigm to examine neural activity during motor action, but such studies have traditionally related cell discharge to hand-based variables. We have developed a new robotic device that allows the mechanics of the shoulder and elbow joints to be manipulated independently. This device was used in the present study to examine neural activity in primary motor cortex (MI) in monkeys ( macaca mulatta) actively maintaining their hand at a central target as they compensated for loads applied to the shoulder and/or elbow. Roughly equal numbers of neurons were sensitive to mechanical loads only at the shoulder, only at the elbow, or loads at both joints. Neurons possessed two important properties. First, cell activity during multi-joint loads could be predicted from its activity during single-joint loads as a vector sum in a space defined by orthogonal axes for the shoulder and elbow. Second, most neurons were related to flexor torque at one joint coupled with extensor torque at the other, a distribution that paralleled the observed activity of forelimb muscles. These results illustrate that while MI activity may be described by independent axes representing each mechanical degree-of-freedom, neural activity is also strongly influenced by the specific motor patterns used to perform a given task.


1999 ◽  
Vol 81 (2) ◽  
pp. 875-894 ◽  
Author(s):  
M.T.V. Johnson ◽  
J. D. Coltz ◽  
M. C. Hagen ◽  
T. J. Ebner

Johnson, M.T.V., J. D. Coltz, M. C. Hagen, and T. J. Ebner. Visuomotor processing as reflected in the directional discharge of premotor and primary motor cortex neurons. J. Neurophysiol. 81: 875–894, 1999. Premotor and primary motor cortical neuronal firing was studied in two monkeys during an instructed delay, pursuit tracking task. The task included a premovement “cue period,” during which the target was presented at the periphery of the workspace and moved to the center of the workspace along one of eight directions at one of four constant speeds. The “track period” consisted of a visually guided, error-constrained arm movement during which the animal tracked the target as it moved from the central start box along a line to the opposite periphery of the workspace. Behaviorally, the animals tracked the required directions and speeds with highly constrained trajectories. The eye movements consisted of saccades to the target at the onset of the cue period, followed by smooth pursuit intermingled with saccades throughout the cue and track periods. Initially, an analysis of variance (ANOVA) was used to test for direction and period effects in the firing. Subsequently, a linear regression analysis was used to fit the average firing from the cue and track periods to a cosine model. Directional tuning as determined by a significant fit to the cosine model was a prominent feature of the discharge during both the cue and track periods. However, the directional tuning of the firing of a single cell was not always constant across the cue and track periods. Approximately one-half of the neurons had differences in their preferred directions (PDs) of >45° between cue and track periods. The PD in the cue or track period was not dependent on the target speed. A second linear regression analysis based on calculation of the preferred direction in 20-ms bins (i.e., the PD trajectory) was used to examine on a finer time scale the temporal evolution of this change in directional tuning. The PD trajectories in the cue period were not straight but instead rotated over the workspace to align with the track period PD. Both clockwise and counterclockwise rotations occurred. The PD trajectories were relatively straight during most of the track period. The rotation and eventual convergence of the PD trajectories in the cue period to the preferred direction of the track period may reflect the transformation of visual information into motor commands. The widely dispersed PD trajectories in the cue period would allow targets to be detected over a wide spatial aperture. The convergence of the PD trajectories occurring at the cue-track transition may serve as a “Go” signal to move that was not explicitly supplied by the paradigm. Furthermore, the rotation and convergence of the PD trajectories may provide a mechanism for nonstandard mapping. Standard mapping refers to a sensorimotor transformation in which the stimulus is the object of the reach. Nonstandard mapping is the mapping of an arbitrary stimulus into an arbitrary movement. The shifts in the PD may allow relevant visual information from any direction to be transformed into an appropriate movement direction, providing a neural substrate for nonstandard stimulus-response mappings.


2003 ◽  
Vol 89 (4) ◽  
pp. 1941-1953 ◽  
Author(s):  
Stuart N. Baker ◽  
Elizabeth M. Pinches ◽  
Roger N. Lemon

Recordings from primary motor cortex (M1) during periods of steady contraction show oscillatory activity; these oscillations are coherent with the activity of contralateral muscles. We investigated synchronization of corticospinal output neurons with the oscillations, which could provide the pathway for their transmission to the spinal motoneurons. One hundred seventy-six antidromically identified pyramidal tract neurons (PTNs) were recorded from M1 in three macaque monkeys trained to perform a precision grip task. Local field potentials (LFP) were simultaneously recorded. All analysis was confined to the hold period of the task, where our previous work has shown that there is the strongest oscillatory activity. Coherence was calculated between LFP and PTN discharge. Significant coherence was seen in three bands, with frequencies of 10–14, 17–31, and 34–44 Hz. Coherence values were low, with the majority of PTN–LFP coherences having a peak lower than 0.05. The phase of coherence was approximately −π/2 radians for each band (with LFP polarity defined as negative upward), although there was some dispersion of phase across the population of PTNs. Coherence was also calculated between pairs of PTNs that had been simultaneously recorded. Where there was significant coherence, it was also generally smaller than 0.05. The phase of PTN–PTN coherence clustered around zero radians. A computer model was constructed to assist the interpretation of the experimental results. It simulated an integrate-and-fire neuron responding to synaptic inputs. A fraction of the synaptic inputs was synchronized with a simulated LFP; the remainder were uncorrelated with it. The model showed that coherence between the LFP and the output spike train considerably underestimated the fraction of synchronized inputs. Additionally, for a given fraction of synchronized inputs, coherence was smaller for high- compared with low-frequency bins. Cell discharge rate also influenced the spike–LFP coherence: coherence was higher for simulations in which the cell discharged at a faster rate. Thus although levels of PTN–LFP coherence seen experimentally were low, a considerable proportion of the input to the PTN must be synchronized with the global oscillatory activity recorded by the LFP. The low LFP–PTN coherences do however indicate that cortical oscillations are transmitted with only low fidelity in the discharge of a single PTN. Using further computer simulations, it was demonstrated that a small population of PTNs could encode the cortical oscillatory signal effectively, since the action of averaging across the population improves the signal:noise ratio. The oscillations will therefore be effectively transmitted to spinal motoneurons, and this has important consequences for the possible role of oscillations in motor control of the hand.


1990 ◽  
Vol 64 (1) ◽  
pp. 133-150 ◽  
Author(s):  
G. E. Alexander ◽  
M. D. Crutcher

1. The purpose of this study was to compare the functional properties of neurons in three interrelated motor areas that have been implicated in the planning and execution of visually guided limb movements. All three structures, the supplementary motor area (SMA), primary motor cortex (MC), and the putamen, are components of the basal ganglia-thalamocortical “motor circuit.” The focus of this report is on neuronal activity related to the preparation for movement. 2. Five rhesus monkeys were trained to perform a visuomotor step-tracking task in which elbow movements were made both with and without prior instruction concerning the direction of the forthcoming movement. To dissociate the direction of preparatory set (and limb movement) from the task-related patterns of tonic (and phasic) muscular activation, some trials included the application of a constant torque load that either opposed or assisted the movements required by the behavioral paradigm. Single-cell activity was recorded from the arm regions of the SMA, MC, and putamen contralateral to the working arm. 3. A total of 741 task-related neurons were studied, including 222 within the SMA, 202 within MC, and 317 within the putamen. Each area contained substantial proportions of neurons that manifested preparatory activity, i.e., cells that showed task-related changes in discharge rate during the postinstruction (preparatory) interval. The SMA contained a larger proportion of such cells (55%) than did MC (37%) or the putamen (33%). The proportion of cells showing only preparatory activity was threefold greater in the SMA (32%) than in MC (11%). In all three areas, cells that showed only preparatory activity tended to be located more rostrally than cells with movement-related activity. Within the arm region of the SMA, the distribution of sites from which movements were evoked by microstimulation showed just the opposite tendency: i.e., microexcitable sites were largely confined to the caudal half of this region. 4. The majority of cells with task-related preparatory activity showed selective activation in anticipation of elbow movements in a particular direction (SMA, 86%; MC, 87%; putamen, 78%), and in most cases the preparatory activity was found to be independent of the loading conditions (80% in SMA, 83% in MC, and 84% in putamen).(ABSTRACT TRUNCATED AT 400 WORDS)


2012 ◽  
Vol 107 (11) ◽  
pp. 3144-3154 ◽  
Author(s):  
Andrew G. Richardson ◽  
Tommaso Borghi ◽  
Emilio Bizzi

Neurons in the primary motor cortex (M1) have been shown to have persistent, memory-like activity following adaptation to altered movement dynamics. However, the techniques used to study these memory traces limited recordings to only single sessions lasting no more than a few hours. Here, chronically implanted microelectrode arrays were used to study the long-term neuronal responses to repeated experience with perturbing, velocity-dependent force fields. Force-field–related neuronal activity within each session was similar to that found previously. That is, the directional tuning curves of the M1 neurons shifted in a manner appropriate to compensate for the forces. Next, the across-session behavior was examined. Long-term learning was evident in the performance improvements across multiple force-field sessions. Correlated with this change, the neuronal population had smaller within-session spike rate changes as experience with the force field increased. The smaller within-session changes were a result of persistent across-session shifts in directional tuning. The results extend the observation of memory traces of newly learned dynamics and provide further evidence for the role of M1 in early motor memory formation.


1991 ◽  
Vol 66 (3) ◽  
pp. 705-718 ◽  
Author(s):  
H. Mushiake ◽  
M. Inase ◽  
J. Tanji

1. Single-cell activity was recorded from three different motor areas in the cerebral cortex: the primary motor cortex (MI), supplementary motor area (SMA), and premotor cortex (PM). 2. Three monkeys (Macaca fuscata) were trained to perform a sequential motor task in two different conditions. In one condition (visually triggered task, VT), they reached to and touched three pads placed in a front panel by following lights illuminated individually from behind the pads. In the other condition (internally guided task, IT), they had to remember a predetermined sequence and press the three pads without visual guidance. In a transitional phase between the two conditions, the animals learned to memorize the correct sequence. Auditory instruction signals (tones of different frequencies) told the animal which mode it was in. After the instruction signals, the animals waited for a visual signal that triggered the first movement. 3. Neuronal activity was analyzed during three defined periods: delay period, premovement period, and movement period. Statistical comparisons were made to detect differences between the two behavioral modes with respect to the activity in each period. 4. Most, if not all, of MI neurons exhibited similar activity during the delay, premovement, and movement periods, regardless of whether the sequential motor task was visually guided or internally determined. 5. More than one-half of the SMA neurons were preferentially or exclusively active in relation to IT during both the premovement (55%) and movement (65%) periods. In contrast, PM neurons were more active (55% and 64% during the premovement and movement periods) in VT. 6. During the instructed-delay period, a majority of SMA neurons exhibited preferential or exclusive relation to IT whereas the activity in PM neurons was observed equally in different modes. 7. Two types of neurons exhibiting properties of special interest were observed. Sequence-specific neurons (active in a particular sequence only) were more common in SMA, whereas transition-specific neurons (active only at the transitional phase) were more common in PM. 8. Although a strict functional dichotomy is not acceptable, these observations support a hypothesis that the SMA is more related to IT, whereas PM is more involved in VT. 9. Some indications pointing to a functional subdivision of PM are obtained.


Sign in / Sign up

Export Citation Format

Share Document