IID Sensitivity Differs Between Two Principal Centers in the Interaural Intensity Difference Pathway: the LSO and the IC

1998 ◽  
Vol 79 (5) ◽  
pp. 2416-2431 ◽  
Author(s):  
Thomas J. Park

Park, Thomas J. IID sensitivity differs between two principal centers in the interaural intensity difference pathway: the LOS and the IC. J. Neurophysiol. 79: 2416–2431, 1998. Interaural intensity differences (IIDs) are the chief cues that animals use to localize high-frequency sounds. Neurons that are sensitive to IIDs are excited by sound at one ear and inhibited by sound at the other. Thus a given IID generates a combination of excitation and inhibition that is reflected in a cell's spike count. In mammals, the so-called “IID pathway” begins in the lateral superior olive (LSO), which is dominated by the type of IID-sensitive neurons just described. The LSO then sends a prominent projection to the inferior colliculus (IC), which also contains a substantial population of IID-sensitive cells. Recent pharmacological studies have suggested that the response properties of IID-sensitive neurons in the IC undergo considerable processing and thus should not simply reflect the output of the LSO. However, we have no direct evidence as to whether IID sensitivity, the defining response feature of these cells, differs at these two levels. The present study makes this direct comparison in the Mexican free-tailed bat, a species that relies greatly on high-frequency hearing and thus on IIDs for localizing sounds in space. Extracellular recording techniques were used to obtain IID functions from 50 IC neurons. Comparable data from 50 LSO cells were available from a previous study. The main result was that IID sensitivity significantly differed between cells in the LSO and the IC. Among LSO cells, sensitivity was centered ∼0 dB (no intensity difference between the ears) whereas, in the IC, sensitivity was biased toward the inhibitory ear: on average, IC cells required a more intense signal at the inhibitory ear to reach the same degree of suppression as observed in LSO cells. Further analysis showed that the vast majority of IC cells (88%) exhibited a mismatch in the latencies of their inputs: inhibition arrived later when an equally strong excitation and inhibition were elicited; this reduced the effectiveness of the inhibition. Because latency shortens with increasing stimulus intensity, an IID with a more intense signal at the inhibitory ear could equate the latencies of excitation and inhibition, increasing the effectiveness of the inhibition. This result suggests that latency mismatches account, to a great extent, for the difference in sensitivity between the LSO and the IC; and when mismatches were negated by electronically time shifting the signals to the ears, sensitivity was no longer significantly different between the two nuclei.

1986 ◽  
Vol 51 (4) ◽  
pp. 362-369 ◽  
Author(s):  
Donna M. Risberg ◽  
Robyn M. Cox

A custom in-the-ear (ITE) hearing aid fitting was compared to two over-the-ear (OTE) hearing aid fittings for each of 9 subjects with mild to moderately severe hearing losses. Speech intelligibility via the three instruments was compared using the Speech Intelligibility Rating (SIR) test. The relationship between functional gain and coupler gain was compared for the ITE and the higher rated OTE instruments. The difference in input received at the microphone locations of the two types of hearing aids was measured for 10 different subjects and compared to the functional gain data. It was concluded that (a) for persons with mild to moderately severe hearing losses, appropriately adjusted custom ITE fittings typically yield speech intelligibility that is equal to the better OTE fitting identified in a comparative evaluation; and (b) gain prescriptions for ITE hearing aids should be adjusted to account for the high-frequency emphasis associated with in-the-concha microphone placement.


The arc spectrum of cæsium was investigated with the object of finding whether any of its lines possessed hyperfine structure, resulting from a nuclear magnetic moment, due to a quantised nuclear spin. The lines belonging to the principal series should, owing to the greater degree of penetration of the electron in the (1 s or 6 1 ) orbit, and the correspondingly greater interaction, show the greatest effect. The lines of the principal series are very easily broadened if the vapour pressure of the metal becomes high, so that great care had to be used in obtaining the spectrum of cæsium at a sufficiently low temperature. The most satisfactory method of excitation was found to be the application by means of external electrodes of a very high frequency alternating current to a tube filled with helium at about 2 mm. pressure containing a small quantity of cæsium. The tube required slight heating to bring out the cæsium lines; without this the helium spectrum was very much stronger than the metallic spectrum. At a very low vapour pressures of cæsium the discharge was blue in colour. Under these conditions the lines of the principal series showed no broadening greater than that due to thermal agitation, but at a slightly higher temperature the colour of the discharge became purple and the lines broadened. The lines belonging to the principal series were found to be very close doublets with very nearly constant frequencies differences. A theory is worked out which explains the origin of these doublets, assuming a nuclear spin of one half quantum; by correlating the difference in the separation of the hyperfine structure doublets in the 1 s — m 2 p 3/2 lines and the 1 s — m 2 p 1/2 lines, it is shown that a ratio of the magnetic to the mechanical moment of the nucleus about twice as great as the corresponding ratio for the electron would account for the observed frequency differences. The spectral notation used throughout is that of Hund. The results are compared with those found for the hyperfine structure of some of the bismuth lines by Back and Goudsmid, and are found to be in satisfactory agreement. A selection principle is found which applies both to the bismuth and the cæsium spectrum.


1974 ◽  
Vol 52 (4) ◽  
pp. 905-908 ◽  
Author(s):  
Y. Lamarre ◽  
E. Puil

Microiontophoretic application of harmaline evoked rhythmic multiunit activity in the inferior olive of decerebrate cats. Harmaline caused strong excitation of individual olivary neurones but did not seem to cause them to discharge in high frequency bursts. These effects suggest that the tremorgenic action of harmaline may be due to an exaggeration of the normal tendency of olivary neurones to fire rhythmically in multiunit bursts.


2021 ◽  
Vol 9 (2) ◽  
pp. 244
Author(s):  
Vishal Gor ◽  
Ryosuke L. Ohniwa ◽  
Kazuya Morikawa

Phase variation (PV) is a well-known phenomenon of high-frequency reversible gene-expression switching. PV arises from genetic and epigenetic mechanisms and confers a range of benefits to bacteria, constituting both an innate immune strategy to infection from bacteriophages as well as an adaptation strategy within an infected host. PV has been well-characterized in numerous bacterial species; however, there is limited direct evidence of PV in the human opportunistic pathogen Staphylococcus aureus. This review provides an overview of the mechanisms that generate PV and focuses on earlier and recent findings of PV in S. aureus, with a brief look at the future of the field.


1991 ◽  
Vol 81 (4) ◽  
pp. 1101-1114
Author(s):  
Jerry A. Carter ◽  
Noel Barstow ◽  
Paul W. Pomeroy ◽  
Eric P. Chael ◽  
Patrick J. Leahy

Abstract Evidence is presented supporting the view that high-frequency seismic noise decreases with increased depth. Noise amplitudes are higher near the free surface where surface-wave noise, cultural noise, and natural (wind-induced) noise predominate. Data were gathered at a hard-rock site in the northwestern Adirondack lowlands of northern New York. Between 15- and 40-Hz noise levels at this site are more than 10 dB less at 945-m depth than they are at the surface, and from 40 to 100 Hz the difference is more than 20 dB. In addition, time variability of the spectra is shown to be greater at the surface than at either 335- or 945-m depths. Part of the difference between the surface and subsurface noise variability may be related to wind-induced noise. Coherency measurements between orthogonal components of motion show high-frequency seismic noise is more highly organized at the surface than it is at depth. Coherency measurements between the same component of motion at different vertical offsets show a strong low-frequency coherence at least up to 945-m vertical offsets. As the vertical offset decreases, the frequency band of high coherence increases.


2006 ◽  
Vol 27 (4) ◽  
pp. 577-581 ◽  
Author(s):  
Benjamin Munson

Susan Gathercole's Keynote Article (2006) is an impressive summary of the literature on nonword repetition and its relationship to word learning and vocabulary size. When considering research by Mary Beckman, Jan Edwards, and myself, Gathercole speculates that our finding of a stronger relationship between vocabulary measures and repetition accuracy for low-frequency sequences than for high-frequency sequences is due to differences in the range of the two measures. In our work on diphone repetition (e.g., Edwards, Beckman, & Munson, 2004; Munson, Edwards, & Beckman, 2005) we tried to increase the range in our dependent measures by coding errors on a finer grained scale than simple correct/incorrect scoring would allow. Moreover, restriction of range does not appear to be the driving factor in the relationship between vocabulary size and the difference between high- and low-frequency sequence repetition accuracy (what we call the frequency effect) in at least one of our studies (Munson et al., 2005). When the children with the 50 lowest mean accuracy scores for high-frequency sequences were examined, vocabulary size accounted for 10.5% of the variance in the frequency effect beyond what was accounted for by chronological age. When the 50 children with the highest mean accuracy scores for high-frequency sequences were examined (a group in which the range of high-frequency accuracy scores was more compressed, arguably reflecting ceiling effects), an estimate of vocabulary size accounted for only 6.9% of the frequency effect beyond chronological age. The associated β coefficient was significant only at the α<0.08 level. This is the opposite pattern than Gathercole's argument would predict.


1995 ◽  
Vol 198 (12) ◽  
pp. 2453-2463 ◽  
Author(s):  
E Wallis ◽  
D Paul ◽  
B Antonsen ◽  
R Hollenberg

Extensor neuromusculature and the muscle receptor organs (MROs) associated with them have been conserved during the evolution of malacostracan crustaceans, despite species-specific differences between homologous segments in divergent taxa. Investigations of these differences could provide insight into how sensory and neuromuscular elements are modified to accommodate changing behavioural patterns. The most obvious differences between squat lobsters (galatheid anomurans) and macruran decapods, such as crayfish, are the greater dorso-ventral flattening of the galatheid abdomen and its flexed resting posture. To investigate whether the evolution of this altered posture affected extensor neuromusculature and MRO morphology and physiology, we used Methylene Blue staining, cobalt backfilling and extracellular recording techniques to describe these elements in the caudal thoracic and six abdominal segments of the squat lobster Munida quadrispina and compared our results with published descriptions of homologous elements in macrurans. In M. quadrispina, there is segmental variation both in the orientation of the MROs along the abdomen and in their physiological responses to stretch: apparent sensitivity is higher in caudal than rostral MROs. Homologues of three of the four accessory neurones found in crayfish occur, but AN#1 has a major dendrite not present in crayfish. Intersegmental differences in size and morphology of extensor motoneurones occur in M. quadrispina, as have been reported in crayfish, but are dissimilar in the two: abdominal ganglion 5 extensor motoneurones are the largest in M. quadrispina and the smallest in crayfish; this difference correlates with the difference in relative size of axial muscles along the abdomen reported previously for these species. M. quadrispina also differs from macrurans in having a single tonic, and no phasic, MRO on each side of the last abdominal segment. Together, these observations suggest that galatheids have evolved modified or additional neurobehavioural control(s) for the abdomen and tailfan.


1967 ◽  
Vol 45 (5) ◽  
pp. 1771-1781 ◽  
Author(s):  
C. R. James ◽  
W. B. Thompson

The heating of a magnetized hot diffuse plasma using the difference frequency signal generated from two high-frequency (35 GHz) transverse waves is examined. The plasma is described by the cold plasma model and a series expansion of harmonics is used to obtain a solution to the equations. It is shown that the energy absorbed by the ions can be made inversely proportional to the collision frequency and the fourth power of the driven frequency and proportional to the fourth power of the driven electric field intensity. An investigation of the sensitivity of the heating process to fluctuations in frequency, density, and d-c. magnetic field is carried out.


Sign in / Sign up

Export Citation Format

Share Document