Stiffness Control of Balance in Quiet Standing

1998 ◽  
Vol 80 (3) ◽  
pp. 1211-1221 ◽  
Author(s):  
David A. Winter ◽  
Aftab E. Patla ◽  
Francois Prince ◽  
Milad Ishac ◽  
Krystyna Gielo-Perczak

Winter, David A., Aftab E. Patla, Francois Prince, Milad Ishac, and Krystyna Gielo-Perczak. Stiffness control of balance in quiet standing. J. Neurophysiol. 80: 1211–1221, 1998. Our goal was to provide some insights into how the CNS controls and maintains an upright standing posture, which is an integral part of activities of daily living. Although researchers have used simple performance measures of maintenance of this posture quite effectively in clinical decision making, the mechanisms and control principles involved have not been clear. We propose a relatively simple control scheme for regulation of upright posture that provides almost instantaneous corrective response and reduces the operating demands on the CNS. The analytic model is derived and experimentally validated. A stiffness model was developed for quiet standing. The model assumes that muscles act as springs to cause the center-of-pressure (COP) to move in phase with the center-of-mass (COM) as the body sways about some desired position. In the sagittal plane this stiffness control exists at the ankle plantarflexors, in the frontal plane by the hip abductors/adductors. On the basis of observations that the COP-COM error signal continuously oscillates, it is evident that the inverted pendulum model is severely underdamped, approaching the undamped condition. The spectrum of this error signal is seen to match that of a tuned mass, spring, damper system, and a curve fit of this “tuned circuit” yields ωn the undamped natural frequency of the system. The effective stiffness of the system, K e , is then estimated from K e = Iω2 n, and the damping B is estimated from B = BW × I, where BW is the bandwidth of the tuned response (in rad/s), and I is the moment of inertia of the body about the ankle joint. Ten adult subjects were assessed while standing quietly at three stance widths: 50% hip-to-hip distance, 100 and 150%. Subjects stood for 2 min in each position with eyes open; the 100% stance width was repeated with eyes closed. In all trials and in both planes, the COP oscillated virtually in phase (within 6 ms) with COM, which was predicted by a simple 0th order spring model. Sway amplitude decreased as stance width increased, and K e increased with stance width. A stiffness model would predict sway to vary as K −0.5 e . The experimental results were close to this prediction: sway was proportional to K −0.55 e . Reactive control of balance was not evident for several reasons. The visual system does not appear to contribute because no significant difference between eyes open and eyes closed results was found at 100% stance width. Vestibular (otolith) and joint proprioceptive reactive control were discounted because the necessary head accelerations, joint displacements, and velocities were well below reported thresholds. Besides, any reactive control would predict that COP would considerably lag (150–250 ms) behind the COM. Because the average COP was only 4 ms delayed behind the COM, reactive control was not evident; this small delay was accounted for by the damping in the tuned mechanical system.

2020 ◽  
Vol 22 (2) ◽  
Author(s):  
Krzysztof Graff ◽  
Ewa Szczerbik ◽  
Małgorzata Kalinowska ◽  
Maciej Jaworski ◽  
Małgorzata Syczewska

Purpose: The aim of the study was to compare the results of six balance tests collected on AMTI AccuSway Plus ACS force platform between healthy female and male children and adolescents. We also searched for possible correlation of the balance measures with subjects’ age. Methods: 228 healthy 6- to 18-year-old subjects (111 boys and 117 girls) participated in the study. Six balance tests were performed with the use of AMTI AccuSway Plus ACS platform: quiet standing for 30s, maximal voluntary sways of the body in the sagittal plane (anterior-posterior – AP test) for 30 s, and in the frontal plane (left-right – ML test) for 30s. All tests were performed in two conditions: eyes open and eyes closed. Results: During quiet standing with eyes open, most balance measures were lower in girls (p < 0.05). In AP and ML tests with eyes open, a few balance parameters were different between boys and girls (p < 0.05). In quiet standing, AP and ML tests with eyes closed, there were no between-gender differences (p > 0.05). In quiet standing with eyes open and closed most balance parameters were negatively correlated with age (p < 0.05). Conclusions: Quiet standing postural sway characteristics depended on gender under normal visual conditions and it was similar in boys and girls under visual deprivation conditions. The vision was differently used by females and males in balance tasks. Static postural stability improved with age regardless of visual conditions.


Motor Control ◽  
2015 ◽  
Vol 19 (1) ◽  
pp. 10-24 ◽  
Author(s):  
Murielle Grangeon ◽  
Cindy Gauthier ◽  
Cyril Duclos ◽  
Jean-Francois Lemay ◽  
Dany Gagnon

The study aimed to (1) compare postural stability between sitting and standing in healthy individuals and (2) define center-of-pressure (COP) measures during sitting that could also explain standing stability. Fourteen healthy individuals randomly maintained (1) two short-sitting positions with eyes open or closed, with or without hand support, and (2) one standing position with eyes open with both upper limbs resting alongside the body. Thirty-six COP measures based on time and frequency series were computed. Greater COP displacement and velocity along with lower frequency measures were found for almost all directional components during standing compared with both sitting positions. The velocity, 95% confidence ellipse area, and centroidal frequency were found to be correlated between unsupported sitting and standing. Despite evidenced differences between sitting and standing, similarities in postural control were highlighted when sitting stability was the most challenging. These findings support further investigation between dynamic sitting and standing balance.


2020 ◽  
Vol 16 ◽  
Author(s):  
Neerja Thukral ◽  
Jaspreet Kaur ◽  
Manoj Malik

Background: Peripheral neuropathy is a major and chronic complication of diabetes mellitus affecting more than 50% of patients suffering from diabetes. There is involvement of both large and small diameter nerve fibres leading to altered somatosensory and motor sensations, thereby causing impaired balance and postural instability. Objective: To assess the effects of exercises on posture and balance in patients suffering from diabetes mellitus. Method: Mean changes in Timed Up and Go test(TUGT), Berg Balance Scale and Postural Sway with eyes open and eyes closed on Balance System were primary outcome measures. RevMan 5.3 software was used for the meta-analyses. Eighteen randomized controlled trials met the selection criteria and were included in the study. All the studies ranked high on PEDro Rating scale. Risk of bias was assessed by Cochrane collaboration tool of risk of bias. Included studies had low risk of bias. Sixteen RCT’s were included for the meta-analysis. Result: Results of meta-analysis showed that there was statistically significant improvement in TUGT with p≤ 0.05 and substantial heterogeneity (I 2 = 84%, p < 0.00001) in experimental group as compared to control group. There was statistically significant difference in Berg Balance Scale scores and heterogeneity of I 2 = 62%, p < 0.00001 and significant changes in postural stability (eyes open heterogeneity of I 2 = 100%, p =0.01 and eyes closed, heteogeneity I 2 = 0%, p =0.01). Sensitivity analysis causes change in heterogeneity. Conclusion: It can be concluded that various exercises like balance training, core stability, Tai-Chi, proprioceptive training etc. have a significant effect in improving balance and posture in diabetic neuropathy.


1984 ◽  
Vol 56 (3) ◽  
pp. 607-612 ◽  
Author(s):  
N. Wolkove ◽  
H. Kreisman ◽  
D. Darragh ◽  
C. Cohen ◽  
H. Frank

We studied the effect of transcendental meditation (TM) on breathing using 16 experienced meditators and 16 control subjects. In controls, there was no significant difference in minute ventilation (VE), respiratory pattern, or hypercapnic response, whether breathing with eyes open-awake (CA), or with eyes closed-relaxing (CR). In meditators, VE decreased significantly during quiet breathing from 14.0 +/- 0.7 1/min with eyes open-awake (MA) to 12.4 +/- 0.6 1/min during meditation (MM) (P less than 0.02). The change in VE during meditation was due to a decrease in tidal volume (VT) resulting from a shortened inspiratory time (TI). Meditation was associated with a decreased response to progressive hypercapnia from 3.7 +/- 0.4 to 2.5 +/- 0.21 X min-1 X Torr-1 during MA and MM trials, respectively (P less than 0.01). During meditation VT was smaller at a given alveolar PCO2 than during MA studies because of a decrease in mean inspiratory flow rate (VT/TI). These observations suggest that an alteration in wakefulness, more subtle than sleep or the unconscious state, can significantly affect the chemical and neural regulation of breathing.


Author(s):  
Muhammad Riski Kurniawan ◽  
Syamsulrizal Syamsulrizal ◽  
Razali Razali ◽  
Israwati Israwati

Local culture-based gymnastics is a combination of Seudati dance with Saman dances movements as well as cheerful healthy exercises that are already in kindergarten. The purpose of this study was to determine the impact of the implementation of local culture-based exercise on the motorized perceptual ability of early childhood in Banda Aceh Kindergarten. This study uses a quantitative approach to the type of experimental research. Population and a sample of 30 students were selected by purposive sampling. Data collection techniques of motoric perceptual ability using tests: (1) Standing on the beam while touching the limbs as instructed by the teacher with eyes open, (2 ) Standing on the beam while touching the body as instructed by the teacher with eyes closed, (3) Jumping and landing in a line with two feet pressed together as instructed by the teacher with eyes open, (4) Jumping and landing in a line with two feet pressed together as instructed by the teacher with eyes closed , (5) Walking in balance, (6) Throwing a tennis ball into a basket with a distance of 2 meters. Before the data is analyzed, the research data is tested for the analysis requirements, namely the normality and homogeneity test. Then the data is analyzed using the t-test. Based on the results of data analysis obtained t count (18.455)> t table (2.045), thus it can be concluded that there is a significant influence between local culture-based exercise on the motoric perceptual ability of early childhood in Aceh kindergarten.      


2019 ◽  
Author(s):  
Nadine Farnes ◽  
Bjørn E. Juel ◽  
André S. Nilsen ◽  
Luis G. Romundstad ◽  
Johan F. Storm

AbstractObjectiveHow and to what extent electrical brain activity is affected in pharmacologically altered states of consciousness, where it is mainly the phenomenological content rather than the level of consciousness that is altered, is not well understood. An example is the moderately psychedelic state caused by low doses of ketamine. Therefore, we investigated whether and how measures of evoked and spontaneous electroencephalographic (EEG) signal diversity are altered by sub-anaesthetic levels of ketamine compared to normal wakefulness, and how these measures relate to subjective assessments of consciousness.MethodsHigh-density electroencephalography (EEG, 62 channels) was used to record spontaneous brain activity and responses evoked by transcranial magnetic stimulation (TMS) in 10 healthy volunteers before and after administration of sub-anaesthetic doses of ketamine in an open-label within-subject design. Evoked signal diversity was assessed using the perturbational complexity index (PCI), calculated from the global EEG responses to local TMS perturbations. Signal diversity of spontaneous EEG, with eyes open and eyes closed, was assessed by Lempel Ziv complexity (LZc), amplitude coalition entropy (ACE), and synchrony coalition entropy (SCE).ResultsAlthough no significant difference was found in the index of TMS-evoked complexity (PCI) between the sub-anaesthetic ketamine condition and normal wakefulness, all the three measures of spontaneous EEG signal diversity showed significantly increased values in the sub-anaesthetic ketamine condition. This increase in signal diversity also correlated with subjective assessment of altered states of consciousness. Moreover, spontaneous signal diversity was significantly higher when participants had eyes open compared to eyes closed, both during normal wakefulness and during influence of sub-anaesthetic ketamine doses.ConclusionThe results suggest that PCI and spontaneous signal diversity may be complementary and potentially measure different aspects of consciousness. Thus, our results seem compatible with PCI being indicative of the brain’s ability to sustain consciousness, as indicated by previous research, while it is possible that spontaneous EEG signal diversity may be indicative of the complexity of conscious content. The observed sensitivity of the latter measures to visual input seems to support such an interpretation. Thus, sub-anaesthetic ketamine may increase the complexity of both the conscious content (experience) and the brain activity underlying it, while the level, degree, or general capacity of consciousness remains largely unaffected.


2022 ◽  
pp. 1-10
Author(s):  
Audrey Parent ◽  
Laurent Ballaz ◽  
Bahare Samadi ◽  
Maria Vocos, pht ◽  
Alain Steve Comtois ◽  
...  

Background: Myotonic dystrophy type 1 (DM1) is characterized by progressive and predominantly distal muscle atrophy and myotonia. Gait and balance impairments, resulting in falls, are frequently reported in this population. However, the extent to which individuals with DM1 rely more on a specific sensory system for balance than asymptomatic individuals (AI) is unknown. Objective: Evaluate postural control performance in individuals with DM1 and its dependence on vision compared to AI. Methods: 20 participants with DM1, divided into two groups based on their diagnosis, i.e. adult and congenital phenotype, and 12 AI participants were recruited. Quiet standing postural control was assessed in two visual conditions: eyes-open and eyes-closed. The outcomes measures were center of pressure (CoP) mean velocity, CoP range of displacement in anteroposterior and mediolateral axis, and the 95% confidence ellipse’s surface. Friedman and Kruskal-Wallis analysis of variance were used to compare outcomes between conditions and groups, respectively. Results: Significant group effect and condition effect were observed on postural control performance. No significant difference was observed between the two DM1 groups. The significant differences observed between the AI group and the two DM1 groups in the eyes-open condition were also observed in the eyes-closed condition. Conclusions: The result revealed poorer postural control performance in people with DM1 compared to AI. The DM1 group also showed similar decrease in performance than AI in eyes-closed condition, suggesting no excessive visual dependency.


2011 ◽  
Vol 20 (4) ◽  
pp. 442-456 ◽  
Author(s):  
Zohreh Meshkati ◽  
Mehdi Namazizadeh ◽  
Mahyar Salavati ◽  
Masood Mazaheri

Context:Although reliability is a population-specific property, few studies have investigated the measurement error associated with force-platform parameters in athletic populations.Objective:To investigate the skill-related differences between athletes and nonathletes in reliability of center-of-pressure (COP) summary measures under eyes-open (EO) and eyes-closed (EC) conditions.Design:Test–retest reliability study.Setting:COP was recorded during double-leg quiet standing on a Kistler force platform before and after a fatiguing treadmill exercise, with EO and EC.Participants:31 male participants including 15 athletes practiced in karate and 16 nonathletes.Main Outcome Measures:Standard deviation (SD) of amplitude, phase-plane portrait, SD of velocity, mean total velocity, and area were calculated from 30-s COP data. Intraclass correlation coefficient (ICC), standard error of measurement, and coefficient of variation (CV) were used as estimates of reliability and precision.Results:Higher ICCs were found for COP measures in the athlete (compared with the nonathlete) group, postfatigued (compared with prefatigued) condition, and EC (compared with EO) tests. CVs smaller than 15% were obtained for most of the COP measures. SD of velocity in the anteroposterior direction showed the highest reliability in most conditions.Conclusions:Tests with EC and to a lesser extent tests performed in the athlete group and in the postfatigued condition showed better reliability.


2004 ◽  
Vol 21 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Eryk P. Przysucha ◽  
M. Jane Taylor

The purpose of this study was to compare the postural sway profiles of 20 boys with and without Developmental Coordination Disorder (DCD) on two conditions of a quiet standing task: eyes open and eyes closed. Anterior-posterior (AP) sway, medio-lateral sway (LAT), area of sway, total path length, and Romberg’s quotient were analyzed. When visual information was available, there was no difference between groups in LAT sway or path length. However, boys with DCD demonstrated more AP sway (p < .01) and greater area of sway (p < .03), which resulted in pronounced excursions closer to their stability limits. Analysis of Romberg’s quotient indicated that boys with DCD did not over-rely on visual information.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-4 ◽  
Author(s):  
Hossein Talebi ◽  
Mohammad Taghi Karimi ◽  
Seyed Hamid Reza Abtahi ◽  
Niloofar Fereshtenejad

Aims. Vestibular system is indicated as one of the most important sensors responsible for static and dynamic postural control. In this study, we evaluated static balance in patients with unilateral vestibular impairments.Materials and Methods. We compared static balance control using Kistler force plate platform between 10 patients with unilateral vestibular impairments and 20 normal counterparts in the same sex ratio and age limits (50±7). We evaluated excursion and velocity of center of pressure (COP) and path length in anteroposterior (AP) and mediolateral (ML) planes with eyes open and with eyes closed.Results. There was no significant difference between COP excursions in ML and AP planes between both groups with eyes open and eyes closed (pvalue > 0.05). In contrast, the difference between velocity and path length of COP in the mentioned planes was significant between both groups with eyes open and eyes closed (pvalue < 0.05).Conclusions. The present study showed the static instability and balance of patients with vestibular impairments indicated by the abnormal characteristics of body balance.


Sign in / Sign up

Export Citation Format

Share Document