Role of Mitochondrial Dysfunction in the Ca2+-Induced Decline of Transmitter Release at K+-Depolarized Motor Neuron Terminals

1999 ◽  
Vol 81 (2) ◽  
pp. 498-506 ◽  
Author(s):  
Michelle A. Calupca ◽  
Gregory M. Hendricks ◽  
Jean C. Hardwick ◽  
Rodney L. Parsons

Role of mitochondrial dysfunction in the Ca2+-induced decline of transmitter release at K+-depolarized motor neuron terminals. The present study tested whether a Ca2+-induced disruption of mitochondrial function was responsible for the decline in miniature endplate current (MEPC) frequency that occurs with nerve-muscle preparations maintained in a 35 mM potassium propionate (35 mM KP) solution containing elevated calcium. When the 35 mM KP contained control Ca2+(1 mM), the MEPC frequency increased and remained elevated for many hours, and the mitochondria within twitch motor neuron terminals were similar in appearance to those in unstimulated terminals. All nerve terminals accumulated FM1–43 when the dye was present for the final 6 min of a 300-min exposure to 35 mM KP with control Ca2+. In contrast, when Ca2+ was increased to 3.6 mM in the 35 mM KP solution, the MEPC frequency initially reached frequencies >350 s− 1 but then gradually fell approaching frequencies <50 s−1. A progressive swelling and eventual distortion of mitochondria within the twitch motor neuron terminals occurred during prolonged exposure to 35 mM KP with elevated Ca2+. After ∼300 min in 35 mM KP with elevated Ca2+, only 58% of the twitch terminals accumulated FM1–43. The decline in MEPC frequency in 35 mM KP with elevated Ca2+ was less when 15 mM glucose was present or when preparations were pretreated with 10 μM oligomycin and then bathed in the 35 mM KP with glucose. When glucose was present, with or without oligomycin pretreatment, a greater percentage of twitch terminals accumulated FM1–43. However, the mitochondria in these preparations were still greatly swollen and distorted. We propose that prolonged depolarization of twitch motor neuron terminals by 35 mM KP with elevated Ca2+ produced a Ca2+-induced decrease in mitochondrial ATP production. Under these conditions, the cytosolic ATP/ADP ratio was decreased thereby compromising both transmitter release and refilling of recycled synaptic vesicles. The addition of glucose stimulated glycolysis which contributed to the maintenance of required ATP levels.

1963 ◽  
Vol 16 (2) ◽  
pp. 323-359 ◽  
Author(s):  
David S. Smith

The organization of the luminescent organ of an adult firefly has been studied with the electron microscope, and particular attention has been given to the disposition of nerve terminals within the organ. The cytological structure of the cells of the tracheal system, the peripheral and terminal axons, the photocytes and the cells of the dorsal ("reflecting") layer is described. Previous observations on the peripheral course of nerve branches alongside the tracheal trunks at the level of the dorsal layer and photocyte epithelium have been confirmed, and specialised nerve endings containing axoplasmic components structurally identical with "synaptic vesicles" and "neurosecretory droplets" have been identified, not in association with the surface of the photocytes, but lying between the apposed surfaces of two components of the tracheal epithelium: the tracheal end-cell and the tracheolar cell. These cytological findings are discussed in terms of available biochemical and physiological evidence concerning the mechanism of light emission in the firefly, especially with respect to the possible role of chemical "transmitter" action in triggering a response in a luminescent effector system.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1065 ◽  
Author(s):  
Manohar Kodavati ◽  
Haibo Wang ◽  
Muralidhar L. Hegde

Mitochondria plays privotal role in diverse pathways that regulate cellular function and survival, and have emerged as a prime focus in aging and age-associated motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Accumulating evidence suggests that many amyloidogenic proteins, including MND-associated RNA/DNA-binding proteins fused in sarcoma (FUS) and TAR DNA binding protein (TDP)-43, are strongly linked to mitochondrial dysfunction. Animal model and patient studies have highlighted changes in mitochondrial structure, plasticity, replication/copy number, mitochondrial DNA instability, and altered membrane potential in several subsets of MNDs, and these observations are consistent with the evidence of increased excitotoxicity, induction of reactive oxygen species, and activation of intrinsic apoptotic pathways. Studies in MND rodent models also indicate that mitochondrial abnormalities begin prior to the clinical and pathological onset of the disease, suggesting a causal role of mitochondrial dysfunction. Our recent studies, which demonstrated the involvement of specific defects in DNA break-ligation mediated by DNA ligase 3 (LIG3) in FUS-associated ALS, raised a key question of its potential implication in mitochondrial DNA transactions because LIG3 is essential for both mitochondrial DNA replication and repair. This question, as well as how wild-type and mutant MND-associated factors affect mitochondria, remain to be elucidated. These new investigation avenues into the mechanistic role of mitochondrial dysfunction in MNDs are critical to identify therapeutic targets to alleviate mitochondrial toxicity and its consequences. In this article, we critically review recent advances in our understanding of mitochondrial dysfunction in diverse subgroups of MNDs and discuss challenges and future directions.


2001 ◽  
Vol 1 ◽  
pp. 11-11
Author(s):  
David Poyner ◽  
Heather Cater ◽  
Nick Hartell ◽  
Alex Conner ◽  
Debbie Hay ◽  
...  

The best characterised signalling pathway activated by both CGRP and adrenomedullin is stimulation of adenylate cyclase via Gs. However, it is clear that in some circumstances the peptides can activate other signal transduction pathways, e.g., increases in intracellular calcium. Many of these signalling pathways can be observed in cultured cells but it is important also to examine isolated tissues to discover the full repertoire of transduction events. In the rat cerebellum there are receptors that respond to both CGRP and adrenomedullin. These seem to be located postsynaptically on Parallel Fibre nerve terminals and modulate transmission to Purkinje cells. Adrenomedullin acts via cAMP, apparently to augment neurotransmitter release. By contrast, CGRP decreases transmitter release, via a non-cAMP mediated pathway. We are currently examining the role of NO and tyrosine kinases in the responses to these peptides.


2019 ◽  
Vol 25 (40) ◽  
pp. 5578-5587 ◽  
Author(s):  
Claus Desler ◽  
Meryl S. Lillenes ◽  
Tone Tønjum ◽  
Lene Juel Rasmussen

The current molecular understanding of Alzheimer’s disease (AD) has still not resulted in successful interventions. Mitochondrial dysfunction of the AD brain is currently emerging as a hallmark of this disease. One mitochondrial function often affected in AD is oxidative phosphorylation responsible for ATP production, but also for production of reactive oxygen species (ROS) and for the de novo synthesis of pyrimidines. This paper reviews the role of mitochondrial produced ROS and pyrimidines in the aetiology of AD and their proposed role in oxidative degeneration of macromolecules, synthesis of essential phospholipids and maintenance of mitochondrial viability in the AD brain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Suzanne Gonzalez

It has been postulated that mitochondrial dysfunction has a significant role in the underlying pathophysiology of bipolar disorder (BD). Mitochondrial functioning plays an important role in regulating synaptic transmission, brain function, and cognition. Neuronal activity is energy dependent and neurons are particularly sensitive to changes in bioenergetic fluctuations, suggesting that mitochondria regulate fundamental aspects of brain function. Vigorous evidence supports the role of mitochondrial dysfunction in the etiology of BD, including dysregulated oxidative phosphorylation, general decrease of energy, altered brain bioenergetics, co-morbidity with mitochondrial disorders, and association with genetic variants in mitochondrial DNA (mtDNA) or nuclear-encoded mitochondrial genes. Despite these advances, the underlying etiology of mitochondrial dysfunction in BD is unclear. A plausible evolutionary explanation is that mitochondrial-nuclear (mitonuclear) incompatibility leads to a desynchronization of machinery required for efficient electron transport and cellular energy production. Approximately 1,200 genes, encoded from both nuclear and mitochondrial genomes, are essential for mitochondrial function. Studies suggest that mitochondrial and nuclear genomes co-evolve, and the coordinated expression of these interacting gene products are essential for optimal organism function. Incompatibilities between mtDNA and nuclear-encoded mitochondrial genes results in inefficiency in electron flow down the respiratory chain, differential oxidative phosphorylation efficiency, increased release of free radicals, altered intracellular Ca2+ signaling, and reduction of catalytic sites and ATP production. This review explores the role of mitonuclear incompatibility in BD susceptibility and resilience against environmental stressors.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Chengyong Shen ◽  
Lei Li ◽  
Kai Zhao ◽  
Lei Bai ◽  
Ailian Wang ◽  
...  

The neuromuscular junction (NMJ) is a synapse between motoneurons and skeletal muscles to control motor behavior. Unlike extensively investigated postsynaptic differentiation, less is known about mechanisms of presynaptic assembly. Genetic evidence of Wnt in mammalian NMJ development was missing due to the existence of multiple Wnts and their receptors. We show when Wnt secretion is abolished from motoneurons by mutating the Wnt ligand secretion mediator (Wls) gene, mutant mice showed muscle weakness and neurotransmission impairment. NMJs were unstable with reduced synaptic junctional folds and fragmented AChR clusters. Nerve terminals were swollen; synaptic vesicles were fewer and mislocated. The presynaptic deficits occurred earlier than postsynaptic deficits. Intriguingly, these phenotypes were not observed when deleting Wls in muscles or Schwann cells. We identified Wnt7A and Wnt7B as major Wnts for nerve terminal development in rescue experiments. These observations demonstrate a necessary role of motoneuron Wnts in NMJ development, in particular presynaptic differentiation.


1994 ◽  
Vol 72 (2) ◽  
pp. 825-830 ◽  
Author(s):  
L. Lando ◽  
R. S. Zucker

1. The photolabile Ca2+ chelator DM-nitrophen was injected into crayfish motor neuron terminals and photolyzed with light flashes of different intensity to determine the cooperativity of Ca2+ action in releasing neurotransmitter. 2. Each flash elicited a phasic postsynaptic response resembling an excitatory junctional potential, apparently due to a presynaptic ”spike” in intracellular calcium concentration ([Ca2+]i). 3. When postsynaptic currents were measured under voltage clamp, a Ca2+ cooperativity of approximately 3–4 was inferred from a supralinear dependence of responses on changes in peak [Ca2+]i caused by flashes differing in intensity by 32–46%. 4. A similar Ca2+ cooperativity was inferred from postsynaptic potentials in response to flashes of varying intensity. 5. The time course of transmitter release indicated by flash responses had slightly slower rising and falling phases than excitatory postsynaptic potentials. There was also a slow tail of transmitter release lasting for approximately 200 ms after a flash. 6. This time course was explained quantitatively by simulations of DM-nitrophen photolysis and binding reactions and a model of Ca2+ activation of transmitter release.


The actions of the organic ‘calcium antagonist’ D600 were examined on the frog sartorius nerve-muscle preparation. D600 blocked voltage-dependent Na + and K + membrane channels in nerve and muscle, and blocked also endplate channels induced by acetylcholine (ACh). The rate of spontaneous transmitter release from motor nerve terminals was increased by D600, independently of external Ca 2+ , although the drug had little effect on transmitter release evoked by nerve impulses. Postsynaptically, miniature endplate currents were reduced in size and their decay time constant became shorter and relatively independent of membrane potential. D600 reduced the increase in ACh-induced endplate current seen with membrane hyperpolarization, and with paired ACh pulses a marked depression and slow recovery of ACh sensitivity were observed. These actions of D600 on the postsynaptic membrane suggest that D600 may act by blocking open endplate channels.


Sign in / Sign up

Export Citation Format

Share Document