Cl− Accumulation Does Not Account for the Depolarizing Phase of the Synaptic GABA Response in Hippocampal Pyramidal Cells

1999 ◽  
Vol 82 (2) ◽  
pp. 768-777 ◽  
Author(s):  
Katherine L. Perkins

It has been proposed that the depolarizing phase of the biphasic synaptic GABA response could be mediated by HCO3 − passing through GABAA channels after dissipation of the transmembrane Cl− gradient due to intracellular Cl− accumulation. To test this hypothesis, giant GABA-mediated postsynaptic currents (GPSCs) were recorded from pyramidal cells in slices of adult guinea pig hippocampus in the presence of 4-aminopyridine. GPSCs consisted of an early outward current (GABAA component) followed by a late inward current (GABAD component). Spontaneous outward inhibitory postsynaptic currents (IPSCs) occurred during the GABADcomponent of the GPSC. GPSCs that were evoked 1–12 s after the preceding GPSC (short interval, siGPSCs) showed no GABADcomponent even though in many cells the amplitude of the siGPSC was greater than the amplitude of the GABAA component of the preceding spontaneous GPSC. In addition, the siGPSC evoked during the GABAD component of a spontaneous GPSC was an outward current. To test whether the siGPSC lacked a GABADcomponent because it was generated predominantly at the soma, where less of an increase in [Cl−]i would occur, picrotoxin was applied to the soma of the pyramidal cell. To the contrary, this focal application of picrotoxin caused less of a reduction in the amplitude of the siGPSC than in the amplitude of the GABAA component of the GPSC. Furthermore when a GPSC and siGPSC were evoked 10 s apart using identical stimuli, the area under the outward current curve was sometimes greater for the siGPSC than for the GPSC, and yet the siGPSC had no inward component. This result indicates that even when the location of Cl− entry was the same, more Cl− could enter the cell during the siGPSC than during the outward component of the GPSC and yet not lead to an inward current. In addition, when the second of two identical stimuli was applied during the inward GABAD component of the first evoked GPSC, the GABAA response it generated was always outward, demonstrating that the equilibrium potential for GABAA responses did not become more positive than the holding potential during a GPSC. Finally, evoking GPSCs at a hyperpolarized potential revealed that the siGPSC actually lacked a GABAD conductance. These results disprove the Cl− accumulation hypothesis of the synaptic depolarizing GABA response and suggest the possibility that a separate channel type may mediate the GABAD component of the GPSC.

1986 ◽  
Vol 55 (4) ◽  
pp. 751-766 ◽  
Author(s):  
M. Segal ◽  
J. L. Barker

Rat hippocampal neurons grown in dissociated cell culture were studied in a medium containing 1 microM tetrodotoxin (TTX) and 25 mM tetraethylammonium (TEA), which eliminated the Na+ and K+ conductances normally activated by depolarizing current injections. In this medium depolarizing current pulses evoked depolarizing regenerative potentials and afterhyperpolarizations in most cells. Both of these events were blocked by close application of Co2+ or Cd2+. These events resemble Ca2+ spikes reported previously in hippocampal pyramidal cells. The membrane potential at which these Ca2+ spikes could be triggered and the rheobase current necessary were dependent on the potential at which the cell was conditioned: the more depolarized the holding potential, the more negative the absolute potential at which a spike could be triggered and the less rheobase current required. The duration of these Ca2+ spikes was also sensitive to the holding potential: the more depolarized the holding level, the longer the duration of the triggered spikes. The amplitude and duration of the Ca2+ spikes were enhanced in a reversible manner by 0.5-1.0 mM 4-aminopyridine (4-AP) delivered in the vicinity of the cell. Two-electrode voltage-clamp analysis of cells studied in TTX, TEA-containing medium revealed an inward current response that peaked in 25-50 ms during depolarizing commands. This response first became detectable during commands to -30 mV. It peaked in amplitude during commands to -10 mV and was enhanced in medium containing elevated [Ca2+]0. It was blocked by either 20 mM Mg2+, 0.2 mM Cd2+, 5 mM Co2+, or 5 mM Mn2+. These results have led us to identify this inward current response as ICa2+. 4-AP enhanced the magnitude and duration of ICa2+ independent of the drug's depressant effects on a transient K+ current also observed under these same experimental conditions. In many but not all cells the Ca2+ spike was followed by a long-lasting hyperpolarization associated with an increase in membrane conductance. This was blocked by Co2+. Under voltage clamp ICa2+ was followed by a slowly developing outward current response that was attenuated by Co2+ or Cd2+. These properties observed under current- and voltage-clamp recording conditions are superficially similar to those previously reported for Ca2+-dependent K+ conductance mechanisms (IC) recorded in these and other membranes. Long-lasting tail currents following activation of IC inverted in the membrane potential range for the K+ equilibrium potential found in these cells.


2003 ◽  
Vol 89 (3) ◽  
pp. 1278-1287 ◽  
Author(s):  
Zixiu Xiang ◽  
David A. Prince

The effects of serotonin (5-HT) on excitability of two cortical interneuronal subtypes, fast-spiking (FS) and low threshold spike (LTS) cells, and on spontaneous inhibitory postsynaptic currents (sIPSCs) in layer V pyramidal cells were studied in rat visual cortical slices using whole-cell recording techniques. Twenty-two of 28 FS and 26 of 35 LTS interneurons responded to local application of 5-HT. In the group of responsive neurons, 5-HT elicited an inward current in 50% of FS cells and 15% of LTS cells, an outward current was evoked in 41% of FS cells and 81% of LTS cells, and an inward current followed by an outward current in 9% of FS cells and 4% LTS cells. The inward and outward currents were blocked by a 5-HT3 receptor antagonist, tropisetron, and a 5-HT1A receptor antagonist, NAN-190, respectively. The 5-HT–induced inward and outward currents were both associated with an increase in membrane conductance. The estimated reversal potential was more positive than −40 mV for the inward current and close to the calculated K+equilibrium potential for the outward current. The 5-HT application caused an increase, a decrease, or an increase followed by a decrease in the frequency of sIPSCs in pyramidal cells. The 5-HT3 receptor agonist 1-( m-chlorophenyl) biguanide increased the frequency of larger and fast-rising sIPSCs, whereas the 5-HT1Areceptor agonist (±)8-hydroxydipropylaminotetralin hydrobromide elicited opposite effects and decreased the frequency of large events. These data indicate that serotonergic activation imposes complex actions on cortical inhibitory networks, which may lead to changes in cortical information processing.


1996 ◽  
Vol 76 (6) ◽  
pp. 3886-3894 ◽  
Author(s):  
K. L. Perkins ◽  
R. K. Wong

1. Whole cell voltage-clamp recording with recording pipette solutions of differing ionic composition was used to determine the ionic basis of the depolarizing gamma-aminobutyric acid (GABA) response. In the presence of 4-aminopyridine and excitatory amino acid receptor blockers, giant GABA-mediated postsynaptic currents (GPSCs) were recorded from CA3 pyramidal neurons in hippocampal slices from adult guinea pigs. With the GABAB component blocked, the GPSC was composed of an initial outward current (GABAA component) that peaked at 115 ms followed by a late inward current (GABAD component) that peaked at 400-600 ms. 2. Reduction of the intracellular concentration of potassium ([K+]i)resulted in no significant change in the reversal potential of the GABAD component of the GPSC, indicating that it is not a nonspecific cation current. 3. The HCO3- permeability of the channel mediating the GABAD response was assessed by using recording pipette solutions containing three different concentrations of bicarbonate ([HCO3-], 19, 49, and 102 mM). The reversal potential of the GABAD response shifted in the depolarizing direction as the HCO3- equilibrium potential was shifted in the depolarizing direction, indicating that the channel mediating the GABAD response is permeable to HCO3-. The reversal potential of the GABAD response was more sensitive to changes in recording pipette [HCO3-] than the reversal potential of the GABAA response, indicating that the GABAD response is carried by HCO3- to a greater extent than the GABAA response. 4. The outward current-inward current sequence of the biphasic GPSC was reversed to an inward current-outward current sequence by using a high [Cl-]/low [HCO3-] recording pipette solution (40 mM Cl-/6 mM HCO3-), indicating that the GABAA component is more sensitive to changes in [Cl-]i, and the GABAD component is more sensitive to changes in [HCO3-]i. 5. These data indicate that the GABAD component of the GPSC is predominantly carried by HCO3-. While this result supports the recently propsed chloride accumulation model, the model in its present form cannot explain the inward current-outward current polarity sequence of the GPSC recorded with the high [Cl-]/low [HCO3-] intracellular solution. The data obtained using that solution reveal the need for a more expansive chloride accumulation/ depletion model or for a model utilizing two distinct ionotropic GABA channels with different anion permeability ratios to account for the biphasic nature of the GPSC.


1991 ◽  
Vol 260 (5) ◽  
pp. C934-C948 ◽  
Author(s):  
K. Kusano ◽  
H. Gainer

Voltage- and Ca(2+)-activated whole cell currents were studied in AR42J cells, a clonal cell line derived from rat pancreatic acinar cells, using a patch electrode voltage-clamp technique. Four kinds of ionic currents were identified by their ionic dependencies, pharmacological properties, and kinetic parameters: 1) an outward current flow due mainly to a voltage-dependent K(+)-conductance increase, 2) an initial transient inward current due to an Na(+)-conductance increase, 3) transient and long-duration inward current due to a Ca(2+)-conductance increase, and 4) a slowly activating inward current that persists over the duration of the depolarizing pulse and deactivates slowly upon repolarization, producing a slow inward tail current. The slow inward tail current was particularly robust and was interpreted as due to a Ca(2+)-activated Cl(-)-conductance increase, since 1) the generation of this current was blocked by removing the extracellular Ca2+, applying Ca(2+)-channel blockers (Cd2+, nifedipine), or by lowering the intracellular Ca2+ concentration [( Ca2+]i) with EGTA; and 2) the reversal potential (Erev) of the slow inward tail current was close to 0 mV in the control condition (152 mM [Cl-]o/154 mM [Cl-]i), and changes of the [Cl-]o/[Cl )i ratio shifted the Erev toward the predicted Cl- equilibrium potential.


1997 ◽  
Vol 273 (1) ◽  
pp. H324-H332 ◽  
Author(s):  
A. Stadnicka ◽  
Z. J. Bosnjak ◽  
J. P. Kampine ◽  
W. M. Kwok

The effects of sevoflurane on the inward rectifier potassium current (IKIR) were examined in guinea pig ventricular cardiomyocytes using the whole cell patch-clamp methodology. Sevoflurane had a unique dual effect on the steady-state current amplitude, producing a reversible, concentration- and voltage-dependent block of the inward current at potentials negative to the potassium equilibrium potential (EK) but enhancing the outward current positive to EK. Accordingly, the steady-state conductance negative to EK was reduced by sevoflurane, but conductance positive to EK was increased. The chord conductance-voltage relationship showed depolarizing shifts at 0.7, 1.3, and 1.6 mM sevoflurane. When the myocytes were dialyzed with 10 mM Mg2+, but not with 1.0 mM Mg2+, sevoflurane further slowed current activation kinetics. With 10 mM intracellular Mg2+, the outward current enhancement by sevoflurane and the associated shifts in half-activation potential were abolished. Polyamines abolished all effects of sevoflurane on IKIR. With the use of the Woodhull model for voltage-dependent block, we determined the sevoflurane interaction site with the inward rectifier potassium channel to be at an electrical distance of 0.2 from the extracellular side.


1998 ◽  
Vol 80 (4) ◽  
pp. 2003-2014 ◽  
Author(s):  
Abdallah Hayar ◽  
Patrice G. Guyenet

Hayar, Abdallah and Patrice G. Guyenet. Pre- and postsynaptic inhibitory actions of methionine-enkephalin on identified bulbospinal neurons of the rat RVL. J. Neurophysiol. 80: 2003–2014, 1998. The effects of methionine-enkephalin (ME) on visualized bulbospinal neurons of the rostral ventrolateral medulla (RVL) were characterized in thin slices at 32°C using the whole cell patch-clamp technique. Thirty-five percent of the recorded neurons were found to be tyrosine hydroxylase immunoreactive (C1 neurons). In voltage-clamp recordings, ME (3 μM) induced an outward current in 66% of RVL bulbospinal neurons. A similar percentage of C1 and non-C1 neurons were opioid sensitive. The current induced by ME was inwardly rectifying, reversed close to the potassium equilibrium potential, and was blocked by barium. Most spontaneous postsynaptic currents recorded in these neurons were tetrodotoxin (TTX)-resistant miniature postsynaptic currents (mPSCs). Approximately, 75% of mPSCs had rapid kinetics (decay time = 4.7 ms) and were glutamatergic [miniature excitatory postsynaptic currents (mEPSCs)] because they were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (10 μM). The remaining mPSCs had much slower kinetics (decay time = 19.6 ms) and were GABAergic [miniature inhibitory postsynaptic currents (mIPSCs)] as they were blocked by gabazine (3 μM) but not by strychnine (3–10 μM). ME decreased the frequency of mEPSCs and mIPSCs by 69 and 43%, respectively. The inhibitory effects of ME were mimicked by the selective μ-opioid receptor agonist endomorphin-1 (EM, 3 μM) and were blocked by naloxone (1 μM). In the absence of TTX, excitatory PSCs evoked by focal electrical stimulation were isolated by application of gabazine and strychnine. EM reduced the amplitude of the evoked EPSCs by 41% without changing their decay time. We conclude that opioids inhibit the majority of RVL C1 and non-C1 bulbospinal neurons by activating a potassium conductance postsynaptically and by decreasing the presynaptic release of glutamate. These cellular mechanisms could explain the depressive cardiovascular effects and the sympathoinhibition produced by opioid transmitters in the RVL, in particular during hypotensive hemorrhage.


2002 ◽  
Vol 120 (3) ◽  
pp. 395-405 ◽  
Author(s):  
Richard W. Carr ◽  
Svetlana Pianova ◽  
James A. Brock

It was reported recently that action potentials actively invade the sensory nerve terminals of corneal polymodal receptors, whereas corneal cold receptor nerve terminals are passively invaded (Brock, J.A., S. Pianova, and C. Belmonte. 2001. J. Physiol. 533:493–501). The present study investigated whether this functional difference between these two types of receptor was due to an absence of voltage-activated Na+ conductances in cold receptor nerve terminals. To address this question, the study examined the effects of polarizing current on the configuration of nerve terminal impulses recorded extracellularly from single polymodal and cold receptors in guinea-pig cornea isolated in vitro. Polarizing currents were applied through the recording electrode. In both receptor types, hyperpolarizing current (+ve) increased the negative amplitude of nerve terminal impulses. In contrast, depolarizing current (−ve) was without effect on polymodal receptor nerve terminal impulses but increased the positive amplitude of cold receptor nerve terminal impulses. The hyperpolarization-induced increase in the negative amplitude of nerve terminal impulses represents a net increase in inward current. In both types of receptor, this increase in inward current was reduced by local application of low Na+ solution and blocked by lidocaine (10 mM). In addition, tetrodotoxin (1 μM) slowed but did not reduce the hyperpolarization-induced increase in the negative amplitude of polymodal and cold nerve terminal impulses. The depolarization-induced increase in the positive amplitude of cold receptor nerve terminal impulses represents a net increase in outward current. This change was reduced both by lidocaine (10 mM) and the combined application of tetraethylammomium (20 mM) and 4-aminopyridine (1 mM). The interpretation is that both polymodal and cold receptor nerve terminals possess high densities of tetrodotoxin-resistant Na+ channels. This finding suggests that in cold receptors, under normal conditions, the Na+ conductances are rendered inactive because the nerve terminal region is relatively depolarized.


1987 ◽  
Vol 65 (3) ◽  
pp. 348-351 ◽  
Author(s):  
F. Moody-Corbett ◽  
P. Brehm

Cultures prepared from dissociated rat thymus were examined 1–2 weeks after plating. Macrophage cells were identified by their adherence, morphological appearance, and ability to phagocytize carbon particles or heat-inactivated Staphylococcus aureus. Whole cell current recordings from macrophage cells revealed an inward current at potentials more negative than the equilibrium potential for potassium and an outward current at potentials more positive than −40 mV in normal recording solution. Acetylcholine or muscarine caused a reduction in inward current but did not alter the outward current. The inward current and acetylcholine effect were seen at less negative potentials by decreasing the potassium equilibrium potential and both were blocked by the addition of cesium to the external recording solution. These results indicated that the inward current was mediated by potassium through the inward or anomalous rectifier. Physiologically, the action of acetylcholine on the inward rectifier of these macrophage cells may be mediated by cholinergic innervation of the thymus.


1971 ◽  
Vol 57 (3) ◽  
pp. 290-296 ◽  
Author(s):  
Gerhard Giebisch ◽  
Silvio Weidmann

Bundles of sheep ventricular fibers were voltage-clamped utilizing a modified sucrose gap technique and intracellular voltage control. An action potential was fired off in the usual way, and the clamp circuit was switched on at preselected times during activity. Clamping the membrane back to its resting potential during the early part of an action potential resulted in a surge of inward current. The initial amplitude of this current surge decreased as the clamp was switched on progressively later during the action potential. Inward current decreasing as a function of time was also recorded if the membrane potential was clamped beyond the presumed K equilibrium potential (to -130 mv). Clamping the membrane to the inside positive range (+40 mv to +60 mv) at different times of an action potential resulted in a step of outward current which was not time-dependent. The results suggest that normal repolarization of sheep ventricle depends on a time-dependent decrease of inward current (Na, Ca) rather than on a time-dependent increase of outward current (K).


1992 ◽  
Vol 262 (5) ◽  
pp. G859-G867 ◽  
Author(s):  
S. M. Sims

Membrane ionic currents were recorded in single smooth muscle cells dissociated from circular muscle of dog stomach (corpus region). When studied under voltage clamp with K+ in the patch electrode, depolarization to potentials more positive than -40 mV, from a holding potential of -70 or -80 mV, evoked transient inward current followed by outward current. Evidence that the outward current was due to K+ came from analysis of deactivation tail currents, which reversed direction close to the K+ equilibrium potential. In addition, the outward current was reduced by tetraethylammonium (TEA, 1-5 mM) applied to the external surface of cells. The Ca(2+)-channel blocker Cd2+ blocked the inward current and also reduced outward current, suggesting Ca(2+)-activated K+ current contributed to the outward current. The voltage-activated inward current was studied in isolation with Cs+ and TEA in the recording electrode to block K+ current. In standard bathing solution containing 2.5 mM Ca2+, the inward current activated between -50 and -40 mV, with peak inward current at +10 mV. The depolarization-activated inward current was blocked by nifedipine and enhanced by BAY K 8644, providing evidence that it was Ca2+ current. The Ca2+ current showed transient and sustained components, both of which showed similar voltage activation and inactivation ranges. The half-inactivation potential was approximately -37 mV. These results provide evidence that smooth muscle cells from the canine gastric corpus possess K+ and Ca2+ channels. Based on the voltage dependence of activation and inactivation and sensitivity to dihydropyridines, L-type Ca2+ channels predominate in canine gastric corpus smooth muscle.


Sign in / Sign up

Export Citation Format

Share Document