Inactivation of CD11b in a mouse transgenic model protects against sepsis-induced lung PMN infiltration and vascular injury

2005 ◽  
Vol 21 (2) ◽  
pp. 230-242 ◽  
Author(s):  
Xiao-Pei Gao ◽  
Qinghui Liu ◽  
Michael Broman ◽  
Dan Predescu ◽  
Randall S. Frey ◽  
...  

To inactivate chronically the β2-integrin CD11b (Mac-1), we made a transgenic model in mice in which we expressed the CD11b antagonist polypeptide neutrophil inhibitory factor (NIF). Using these mice, we determined the in vivo effects of CD11b inactivation on polymorphonuclear leukocyte (PMN) function and acute lung injury (ALI) induced by Escherichia coli septicemia. In wild-type PMNs, CD11b expression was induced within 1 h after E. coli challenge, whereas this response was significantly reduced in NIF+/+ PMNs. Coimmunoprecipitation studies showed that NIF associated with CD11b in NIF+/+ PMNs. To validate the effectiveness of CD11b blockade, we compared PMN function in NIF+/+ and Mac-1-deficient (Mac-1−/−) mice. Adhesion of both Mac-1−/− and NIF+/+ PMNs to endothelial cells in response to LPS was reduced in both types of PMNs and fully blocked only by the addition of anti-CD11a monoclonal antibody. This finding is indicative of intact CD11a function in the NIF+/+ PMNs but the blockade of CD11b function. CD11b inactivation in NIF+/+ mice interfered with lung PMN infiltration induced by E. coli and prevented the increase in lung microvessel permeability and edema formation, with most of the protection seen in the 1-h period after the E. coli. Thus our results demonstrate that CD11b plays a crucial role in mediating lung PMN sequestration and vascular injury in the early phase of gram-negative septicemia. The NIF+/+ mouse model, in which CD11b is inactivated by binding to NIF, is a potentially useful model for in vivo assessment of the role of PMN CD11b in the mechanism of vascular inflammation.

2005 ◽  
Vol 289 (6) ◽  
pp. L1094-L1103 ◽  
Author(s):  
Evan Ong ◽  
Xiao-Pei Gao ◽  
Dan Predescu ◽  
Michael Broman ◽  
Asrar B. Malik

We addressed the in vivo role of phosphatidylinositol 3-kinase-γ (PI3K-γ) in signaling the sequestration of polymorphonuclear leukocytes (PMNs) in lungs and in the mechanism of inflammatory lung vascular injury. We studied mice with deletion of the p110 catalytic subunit of PI3K-γ (PI3K-γ−/− mice). We measured lung tissue PMN sequestration, microvascular permeability, and edema formation after bacteremia induced by intraperitoneal Escherichia coli challenge. PMN infiltration into the lung interstitium in PI3K-γ−/− mice as assessed morphometrically was increased 100% over that in control mice within 1 h after bacterial challenge. PI3K-γ−/− mice also developed a greater increase in lung microvascular permeability after E. coli challenge, resulting in edema formation. The augmented lung tissue PMN sequestration in PI3K-γ−/− mice was associated with increased expression of the PMN adhesive proteins CD47 and β3-integrins. We observed increased association of CD47 and β3-integrins with the extracellular matrix protein vitronectin in lungs of PI3K-γ−/− mice after E. coli challenge. PMNs from these mice also showed increased β3-integrin expression and augmented β3-integrin-dependent PMN adhesion to vitronectin. These results point to a key role of PMN PI3K-γ in negatively regulating CD47 and β3-integrin expression in gram-negative sepsis. PI3K-γ activation in PMNs induced by E. coli may modulate the extent of lung tissue PMN sequestration secondary to CD47 and β3-integrin expression. Therefore, the level of PI3K-γ activation may be an important determinant of PMN-dependent lung vascular injury.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2223
Author(s):  
Manon Dominique ◽  
Nicolas Lucas ◽  
Romain Legrand ◽  
Illona-Marie Bouleté ◽  
Christine Bôle-Feysot ◽  
...  

CLPB (Caseinolytic peptidase B) protein is a conformational mimetic of α-MSH, an anorectic hormone. Previous in vivo studies have already shown the potential effect of CLPB protein on food intake and on the production of peptide YY (PYY) by injection of E. coli wild type (WT) or E. coli ΔClpB. However, until now, no study has shown its direct effect on food intake. Furthermore, this protein can fragment naturally. Therefore, the aim of this study was (i) to evaluate the in vitro effects of CLPB fragments on PYY production; and (ii) to test the in vivo effects of a CLPB fragment sharing molecular mimicry with α-MSH (CLPB25) compared to natural fragments of the CLPB protein (CLPB96). To do that, a primary culture of intestinal mucosal cells from male Sprague–Dawley rats was incubated with proteins extracted from E. coli WT and ΔCLPB after fragmentation with trypsin or after a heat treatment of the CLPB protein. PYY secretion was measured by ELISA. CLPB fragments were analyzed by Western Blot using anti-α-MSH antibodies. In vivo effects of the CLPB protein on food intake were evaluated by intraperitoneal injections in male C57Bl/6 and ob/ob mice using the BioDAQ® system. The natural CLPB96 fragmentation increased PYY production in vitro and significantly decreased cumulative food intake from 2 h in C57Bl/6 and ob/ob mice on the contrary to CLPB25. Therefore, the anorexigenic effect of CLPB is likely the consequence of enhanced PYY secretion.


2021 ◽  
Vol 22 (3) ◽  
pp. 1347
Author(s):  
Anaïs Amend ◽  
Natalie Wickli ◽  
Anna-Lena Schäfer ◽  
Dalina T. L. Sprenger ◽  
Rudolf A. Manz ◽  
...  

As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.


Microbiology ◽  
2005 ◽  
Vol 151 (7) ◽  
pp. 2291-2299 ◽  
Author(s):  
Stefan Fälker ◽  
M. Alexander Schmidt ◽  
Gerhard Heusipp

DNA adenine methyltransferase (Dam) plays an important role in physiological processes of Gram-negative bacteria such as mismatch repair and replication. In addition, Dam regulates the expression of virulence genes in various species. The authors cloned the dam gene of Yersinia enterocolitica and showed that Dam is essential for viability. Dam overproduction in Y. enterocolitica resulted in an increased frequency of spontaneous mutation and decreased resistance to 2-aminopurine; however, these effects were only marginal compared to the effect of overproduction of Escherichia coli-derived Dam in Y. enterocolitica, implying different roles or activities of Dam in mismatch repair of the two species. These differences in Dam function are not the cause for the essentiality of Dam in Y. enterocolitica, as Dam of E. coli can complement a dam defect in Y. enterocolitica. Instead, Dam seems to interfere with expression of essential genes. Furthermore, Dam mediates virulence of Y. enterocolitica. Dam overproduction results in increased tissue culture invasion of Y. enterocolitica, while the expression of specifically in vivo-expressed genes is not altered.


2003 ◽  
Vol 285 (5) ◽  
pp. L996-L1005 ◽  
Author(s):  
Rainer Kiefmann ◽  
Kai Heckel ◽  
Martina Dörger ◽  
Sonja Schenkat ◽  
Mechthild Stoeckelhuber ◽  
...  

During systemic inflammation, recruitment and activation of leukocytes in the pulmonary microcirculation may result in a potentially life-threatening acute lung injury. We elucidated the role of the poly(ADP-ribose) synthetase (PARS), a nucleotide-polymerizing enzyme, in the regulation of leukocyte recruitment within the lung with regard to the localization in the pulmonary microcirculation and in correlation to hemodynamics in the respective vascular segments and expression of intercellular adhesion molecule 1 during endotoxemia. Inhibition of PARS by 3-aminobenzamide reduced the endotoxin-induced leukocyte recruitment within pulmonary arterioles, capillaries, and venules in rabbits as quantified by in vivo fluorescence microscopy. Microhemodynamics and thus shear rates in all pulmonary microvascular segments remained constant. Simultaneously, inhibition of PARS with 3-aminobenzamide suppressed the endotoxin-induced adhesion molecules expression as demonstrated for intercellular adhesion molecule 1 by immunohistochemistry and Western blot analysis. We confirmed this result with the use of PARS knockout mice. The inhibitory effect of 3-aminobenzamide on leukocyte recruitment was associated with a reduction of pulmonary capillary leakage and edema formation. We first provide evidence that PARS activation mediates the leukocyte sequestration in pulmonary microvessels through upregulation of adhesion molecules. As reactive oxygen species released from leukocyte are supposed to cause an upregulation of adhesion molecules we conclude that PARS inhibition contributes to termination of this vicious cycle and inhibits the inflammatory process.


2008 ◽  
Vol 190 (18) ◽  
pp. 6170-6177 ◽  
Author(s):  
Linda D. Rankin ◽  
Diane M. Bodenmiller ◽  
Jonathan D. Partridge ◽  
Shirley F. Nishino ◽  
Jim C. Spain ◽  
...  

ABSTRACT Chromatin immunoprecipitation and microarray (ChIP-chip) analysis showed that the nitric oxide (NO)-sensitive repressor NsrR from Escherichia coli binds in vivo to the promoters of the tynA and feaB genes. These genes encode the first two enzymes of a pathway that is required for the catabolism of phenylethylamine (PEA) and its hydroxylated derivatives tyramine and dopamine. Deletion of nsrR caused small increases in the activities of the tynA and feaB promoters in cultures grown on PEA. Overexpression of nsrR severely retarded growth on PEA and caused a marked repression of the tynA and feaB promoters. Both the growth defect and the promoter repression were reversed in the presence of a source of NO. These results are consistent with NsrR mediating repression of the tynA and feaB genes by binding (in an NO-sensitive fashion) to the sites identified by ChIP-chip. E. coli was shown to use 3-nitrotyramine as a nitrogen source for growth, conditions which partially induce the tynA and feaB promoters. Mutation of tynA (but not feaB) prevented growth on 3-nitrotyramine. Growth yields, mutant phenotypes, and analyses of culture supernatants suggested that 3-nitrotyramine is oxidized to 4-hydroxy-3-nitrophenylacetate, with growth occurring at the expense of the amino group of 3-nitrotyramine. Accordingly, enzyme assays showed that 3-nitrotyramine and its oxidation product (4-hydroxy-3-nitrophenylacetaldehyde) could be oxidized by the enzymes encoded by tynA and feaB, respectively. The results suggest that an additional physiological role of the PEA catabolic pathway is to metabolize nitroaromatic compounds that may accumulate in cells exposed to NO.


2020 ◽  
Vol 21 (22) ◽  
pp. 8437
Author(s):  
Jae-Sung Kim ◽  
Seok-Jun Mun ◽  
Euni Cho ◽  
Donggyu Kim ◽  
Wooic Son ◽  
...  

Dense granule proteins (GRAs) are essential components in Toxoplasma gondii, which are suggested to be promising serodiagnostic markers in toxoplasmosis. In this study, we investigated the function of GRA9 in host response and the associated regulatory mechanism, which were unknown. We found that GRA9 interacts with NLR family pyrin domain containing 3 (NLRP3) involved in inflammation by forming the NLRP3 inflammasome. The C-terminal of GRA9 (GRA9C) is essential for GRA9–NLRP3 interaction by disrupting the NLRP3 inflammasome through blocking the binding of apoptotic speck-containing (ASC)-NLRP3. Notably, Q200 of GRA9C is essential for the interaction of NLRP3 and blocking the conjugation of ASC. Recombinant GRA9C (rGRA9C) showed an anti-inflammatory effect and the elimination of bacteria by converting M1 to M2 macrophages. In vivo, rGRA9C increased the anti-inflammatory and bactericidal effects and subsequent anti-septic activity in CLP- and E. coli- or P. aeruginosa-induced sepsis model mice by increasing M2 polarization. Taken together, our findings defined a role of T. gondii GRA9 associated with NLRP3 in host macrophages, suggesting its potential as a new candidate therapeutic agent for sepsis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tomohiro Shimada ◽  
Yui Yokoyama ◽  
Takumi Anzai ◽  
Kaneyoshi Yamamoto ◽  
Akira Ishihama

AbstractOutside a warm-blooded animal host, the enterobacterium Escherichia coli K-12 is also able to grow and survive in stressful nature. The major organic substance in nature is plant, but the genetic system of E. coli how to utilize plant-derived materials as nutrients is poorly understood. Here we describe the set of regulatory targets for uncharacterized IclR-family transcription factor YiaJ on the E. coli genome, using gSELEX screening system. Among a total of 18 high-affinity binding targets of YiaJ, the major regulatory target was identified to be the yiaLMNOPQRS operon for utilization of ascorbate from fruits and galacturonate from plant pectin. The targets of YiaJ also include the genes involved in the utilization for other plant-derived materials as nutrients such as fructose, sorbitol, glycerol and fructoselysine. Detailed in vitro and in vivo analyses suggest that L-ascorbate and α-D-galacturonate are the effector ligands for regulation of YiaJ function. These findings altogether indicate that YiaJ plays a major regulatory role in expression of a set of the genes for the utilization of plant-derived materials as nutrients for survival. PlaR was also suggested to play protecting roles of E. coli under stressful environments in nature, including the formation of biofilm. We then propose renaming YiaJ to PlaR (regulator of plant utilization).


Sign in / Sign up

Export Citation Format

Share Document