scholarly journals Combined elastic strain and macroscopic stress characterization in polycrystalline Cu thin films

2006 ◽  
Vol 21 (1) ◽  
pp. 25-29 ◽  
Author(s):  
E. Eiper ◽  
K. J. Martinschitz ◽  
J. Keckes

This work introduces a new simple approach to determine experimental X-ray elastic constants (XECs) of thin films by coupling the sin2ψ method and the substrate curvature technique. The approach is demonstrated on polycrystalline Cu thin films with the thickness 200, 800, and 2400 nm deposited on Si(100) substrates. Applying synchrotron radiation, the elastic strains in the films are determined using sin2ψ method while the macroscopic stresses are assessed by measuring the substrate curvature. The stresses are calculated using the Stoney formula from the radius of substrate curvature determined by the rocking curve measurement of substrate 400 reflection at different sample positions. Results show that the magnitude of the macroscopic stress in the films is proportional to the magnitude of the slope in the sin2ψ plots. On the basis of this observation, XECs of the films were calculated showing no dependence on the film thickness. The characterization of the samples was performed at the synchrotron source Hasylab.

1993 ◽  
Vol 310 ◽  
Author(s):  
Keiichi Nashimoto

AbstractDense epitaxial LiNbO3 thin films without any misoriented plane on sapphire substrates were obtained with a sol-gel process utilizing 2-methoxyethanol based metal alkoxide precursors without pre-hydrolysis and rapid thermal annealing. Epitaxial LiNbO3 films annealed at 700°C were transparent and showed refractive indices close to bulk single crystal values. Epitaxial and transparent LiTaO3 films crystallized successfully on sapphire substrates with single orientations with the present process. X-ray rocking curve full widths at half maximum of epitaxial LiNbO3 and LiTaO3 films on sapphire (110) substrates and annealed at 700°C were less than 0.4 degree.


1992 ◽  
Vol 270 ◽  
Author(s):  
Haojie Yuan ◽  
R. Stanley Williams

ABSTRACTThin films of pure germanium-carbon alloys (GexC1−x with x ≈ 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) have been grown on Si(100) and A12O3 (0001) substrates by pulsed laser ablation in a high vacuum chamber. The films were analyzed by x-ray θ-2θ diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), conductivity measurements and optical absorption spectroscopy. The analyses of these new materials showed that films of all compositions were amorphous, free of contamination and uniform in composition. By changing the film composition, the optical band gap of these semiconducting films was varied from 0.00eV to 0.85eV for x = 0.0 to 1.0 respectively. According to the AES results, the carbon atoms in the Ge-C alloy thin film samples has a bonding configuration that is a mixture of sp2 and sp3 hybridizations.


Author(s):  
L. I. Goray ◽  
E. V. Pirogov ◽  
M. V. Svechnikov ◽  
M. S. Sobolev ◽  
N. K. Polyakov ◽  
...  

1989 ◽  
pp. 261-268 ◽  
Author(s):  
George Andermann ◽  
Francis Fujiwara ◽  
T. C. Huang ◽  
J. K. Howard ◽  
N. Staud

2013 ◽  
Vol 665 ◽  
pp. 254-262 ◽  
Author(s):  
J.R. Rathod ◽  
Haresh S. Patel ◽  
K.D. Patel ◽  
V.M. Pathak

Group II-VI compounds have been investigated largely in last two decades due to their interesting optoelectronic properties. ZnTe, a member of this family, possesses a bandgap around 2.26eV. This material is now a day investigated in thin film form due to its potential towards various viable applications. In this paper, the authors report their investigations on the preparation of ZnTe thin films using vacuum evaporation technique and their structural and optical characterizations. The structural characterization, carried out using an X-ray diffraction (XRD) technique shows that ZnTe used in present case possesses a cubic structure. Using the same data, the micro strain and dislocation density were evaluated and found to be around 1.465×10-3lines-m2and 1.639×1015lines/m2respecctively. The optical characterization carried out in UV-VIS-NIR region reveals the fact that band gap of ZnTe is around 2.2eV in present case. In addition to this, it was observed that the value of bandgap decreases as the thickness of films increases. The direct transitions of the carries are involved in ZnTe. Using the data of UV-VIS-NIR spectroscopy, the transmission coefficient and extinction coefficient were also calculated for ZnTe thin films. Besides, the variation of extinction coefficient with wavelength has also been discussed here.


1990 ◽  
Vol 37 (1) ◽  
pp. 141-144
Author(s):  
Tsunekazu Iwata ◽  
Akihiko Yamaji ◽  
Youichi Enomoto

Sign in / Sign up

Export Citation Format

Share Document