High-Precision Characterization of Super-Multiperiod AlGaAs/GaAs Superlattices Using X-Ray Reflectometry on a Synchrotron Source

Author(s):  
L. I. Goray ◽  
E. V. Pirogov ◽  
M. V. Svechnikov ◽  
M. S. Sobolev ◽  
N. K. Polyakov ◽  
...  
2006 ◽  
Vol 21 (1) ◽  
pp. 25-29 ◽  
Author(s):  
E. Eiper ◽  
K. J. Martinschitz ◽  
J. Keckes

This work introduces a new simple approach to determine experimental X-ray elastic constants (XECs) of thin films by coupling the sin2ψ method and the substrate curvature technique. The approach is demonstrated on polycrystalline Cu thin films with the thickness 200, 800, and 2400 nm deposited on Si(100) substrates. Applying synchrotron radiation, the elastic strains in the films are determined using sin2ψ method while the macroscopic stresses are assessed by measuring the substrate curvature. The stresses are calculated using the Stoney formula from the radius of substrate curvature determined by the rocking curve measurement of substrate 400 reflection at different sample positions. Results show that the magnitude of the macroscopic stress in the films is proportional to the magnitude of the slope in the sin2ψ plots. On the basis of this observation, XECs of the films were calculated showing no dependence on the film thickness. The characterization of the samples was performed at the synchrotron source Hasylab.


2014 ◽  
Vol 21 (6) ◽  
pp. 1367-1369 ◽  
Author(s):  
Weihe Xu ◽  
Kenneth Lauer ◽  
Yong Chu ◽  
Evgeny Nazaretski

A rotational stage is a key component of every X-ray instrument capable of providing tomographic or diffraction measurements. To perform accurate three-dimensional reconstructions, runout errors due to imperfect rotation (e.g.circle of confusion) must be quantified and corrected. A dedicated instrument capable of full characterization and circle of confusion mapping in rotary stages down to the sub-10 nm level has been developed. A high-stability design, with an array of five capacitive sensors, allows simultaneous measurements of wobble, radial and axial displacements. The developed instrument has been used for characterization of two mechanical stages which are part of an X-ray microscope.


2011 ◽  
Vol 335-336 ◽  
pp. 1000-1003
Author(s):  
Patchara Sukonrat ◽  
Chanwut Sriphung ◽  
Watcharee Rattanasakulthong ◽  
Chitnarong Sirisathitkul

Arrays of SU-8 photoresist pillars (10 μm ×10 μm × 50 μm) on copper substrates were fabricated by X-ray lithography. The photoresist-coated substrates were irradiated by X-ray from a synchrotron source through patterned silver dots on a graphite mask. After the resist development, the chemically stable and mechanically hardened SU-8 pillars exhibited smooth vertical sidewalls and cross section with up to 10 % dimensional errors from the designated pattern. Cobalt of thickness ranging from 50 to 80 nm was then deposited on these patterned substrates by RF sputtering. These cobalt films on SU-8 pillars showed a lower in-plane magnetization than that of continuous cobalt films because of their smaller grain size. The measurement with out-of-plane magnetic field gave rise to a higher magnetization and this anisotropic behavior was observed only in cobalt-coated pillars.


2010 ◽  
Author(s):  
Y. Senba ◽  
H. Kishimoto ◽  
H. Ohashi ◽  
H. Yumoto ◽  
S. Goto ◽  
...  
Keyword(s):  

Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


Author(s):  
J. C. Russ ◽  
T. Taguchi ◽  
P. M. Peters ◽  
E. Chatfield ◽  
J. C. Russ ◽  
...  

Conventional SAD patterns as obtained in the TEM present difficulties for identification of materials such as asbestiform minerals, although diffraction data is considered to be an important method for making this purpose. The preferred orientation of the fibers and the spotty patterns that are obtained do not readily lend themselves to measurement of the integrated intensity values for each d-spacing, and even the d-spacings may be hard to determine precisely because the true center location for the broken rings requires estimation. We have implemented an automatic method for diffraction pattern measurement to overcome these problems. It automatically locates the center of patterns with high precision, measures the radius of each ring of spots in the pattern, and integrates the density of spots in that ring. The resulting spectrum of intensity vs. radius is then used just as a conventional X-ray diffractometer scan would be, to locate peaks and produce a list of d,I values suitable for search/match comparison to known or expected phases.


Sign in / Sign up

Export Citation Format

Share Document