X-ray powder diffraction data for ErH2−xDx

2008 ◽  
Vol 23 (3) ◽  
pp. 259-264 ◽  
Author(s):  
Mark A. Rodriguez ◽  
Robert M. Ferrizz ◽  
Clark S. Snow ◽  
James F. Browning

X-ray powder diffraction data for ErH2−xDx formed by hydrogen (i.e., protium)–deuterium loading of Er metal are reported. Lattice parameters for the varying hydrogen–deuterium compositions followed Vergard’s law behavior. The cubic lattice parameter at room temperature for ErH2−xDx obeys a linear relationship according to the formula a=5.1287−1.1120×10−4⋅x, where a is the lattice parameter of the fluorite-type structure and x is the mole percent of deuterium. Microstrain measurements suggest a possible ordering of hydrogen and deuterium in the composition ErH1D1.

Author(s):  
Robert E. Dinnebier ◽  
Hanne Nuss ◽  
Martin Jansen

AbstractThe crystal structures of solvent-free lithium, sodium, rubidium, and cesium squarates have been determined from high resolution synchrotron and X-ray laboratory powder patterns. Crystallographic data at room temperature of Li


1997 ◽  
Vol 12 (4) ◽  
pp. 252-254 ◽  
Author(s):  
G. Ghosh ◽  
G. V. Narasimha Rao ◽  
V. S. Sastry ◽  
A. Bharathi ◽  
Y. Hariharan ◽  
...  

X-ray powder diffraction data of CoSi are reported. The sample was prepared by an arc melting process and has a cubic structure (space group P213, space group No. 198) with lattice parameter a=4.4427 Å, Dx=6.591 gcm−3, Z=4, and I/Ic=1.03.


1997 ◽  
Vol 12 (3) ◽  
pp. 134-135
Author(s):  
Liangqin Nong ◽  
Lingmin Zeng ◽  
Jianmin Hao

The compound DyNiSn has been studied by X-ray powder diffraction. The X-ray diffraction patterns for this compound at room temperature are reported. DyNiSn is orthorhombic with lattice parameters a=7.1018(1) Å, b=7.6599(2) Å, c=4.4461(2) Å, space group Pna21 and 4 formula units of DyNiSn in unit cell. The Smith and Snyder Figure-of-Merit F30 for this powder pattern is 26.7(0.0178,63).


1999 ◽  
Vol 14 (4) ◽  
pp. 280-283 ◽  
Author(s):  
A. Rafalska-Łasocha ◽  
W. Łasocha ◽  
M. Michalec

The X-ray powder diffraction patterns of anilinium trimolybdate tetrahydrate, (C6H5NH3)2Mo3O10·4H2O, and anilinium trimolybdate dihyhydrate, (C6H5NH3)2Mo3O10·2H2O, have been measured in room temperature. The unit cell parameters were refined to a=11.0670(7) Å, b=7.6116(8) Å, c=25.554(3) Å, space group Pnma(62) and a=17.560(2) Å, b=7.5621(6) Å, c=16.284(2) Å, β=108.54(1)°, space group P21(4) or P21/m(11) for orthorhombic anilinium trimolybdate tetrahydrate and monoclinic anilinium trimolybdate dihydrate, respectively.


2006 ◽  
Vol 21 (4) ◽  
pp. 318-319
Author(s):  
Mark A. Rodriguez ◽  
David P. Adams

X-ray powder diffraction data for a rhombohedral AlPt phase formed by self-propagating, high-temperature reactions of Al∕Pt bi-layer films are reported. Multilayer Al∕Pt thin film samples, reacted in air or vacuum, transformed into rhombohedral AlPt with space group R-3(148). Indexing and lattice parameter refinement of AlPt powders (generated from thin-film samples) yielded trigonal/hexagonal unit-cell lattice parameters of a=15.623(6) Å and c=5.305(2) Å, Z=39, and V=1121.5 Å3.


2009 ◽  
Vol 24 (3) ◽  
pp. 250-253 ◽  
Author(s):  
Peter Varlashkin

The room temperature powder pattern of lapatinib ditosylate monohydrate (active ingredient in Tykerb used to treat refractory breast cancer) was indexed and the cell from the single crystal X-ray diffraction structure was refined using the experimental capillary data. Unit-cell parameters for the orthorhombic compound with space group Pbca refined from powder diffraction data are a=9.6850±0.0009 Å, b=29.364±0.003 Å, and c=30.733±0.003 Å, α=β=γ=90°, z=8, V=8740.1 Å3. Values of 2θ, d, I, and Miller indices are reported.


2002 ◽  
Vol 57 (11) ◽  
pp. 1215-1223 ◽  
Author(s):  
Ratikanta Mishraa ◽  
Rainer Pöttgen ◽  
Rolf-Dieter Hoffmann ◽  
Thomas Fickenscher ◽  
Marcus Eschen ◽  
...  

The ternary antimonides YbTSb (T = Ni, Pd, Pt, Cu, Ag, Au) were synthesized by reaction of the elements in sealed tantalum tubes in a high-frequency furnace. The structures of YbCuSb (NdPtSb type), YbAgSb (TiNiSi type), and YbAuSb (NdPtSb type) were confirmed on the basis of X-ray powder diffraction data. Those of the nickel, palladium, and platinum based antimonides (cubic MgAgAs type) were refined from single crystal X-ray data. The nickel based antimonide has a pronounced homogeneity range YbNixSb. The structures of five crystals have been investigated. The cubic lattice parameter increases with increasing nickel content from 613.13(6) pm(x = 0.17) to 621.25(5) pm (x = 0.63). Full occupancy of the palladium and antimony sites was observed for YbPdSb while the platinum compound shows some platinum vacancies leading to the composition YbPt0.969(7)Sb for the investigated crystal. A new, hightemperature modification of YbPdSb was obtained by rapidly quenching an arc-melted sample: TiNiSi type, Pnma, a = 725.6(2), b = 458.3(1), c = 785.4(2) pm, wR2 = 0.1255, 421 F2 values, 20 variables. The antimonides YbTSb (T = Ni, Pd, Pt, Cu, Ag, Au) show single 121Sb Mössbauer signals at isomer shifts ranging from -7.34 to -7.82 mm/s. The crystal chemistry and chemical bonding of these antimonides is discussed.


2003 ◽  
Vol 18 (2) ◽  
pp. 162-164
Author(s):  
F. J. W. J. Labuschagné ◽  
S. M. C. Verryn ◽  
W. W. Focke

The compound ammonium D-gluconate (C6H11O7−NH4+) has been studied by X-ray powder diffraction. The powder diffraction pattern and data obtained at room temperature are presented (cell data and powder data summary).


2015 ◽  
Vol 30 (4) ◽  
pp. 370-371
Author(s):  
J.A. Kaduk ◽  
K. Zhong ◽  
T.N. Blanton ◽  
S. Gates ◽  
T.G. Fawcett

The room-temperature crystal structure of levothyroxine sodium pentahydrate has been refined using synchrotron powder diffraction data. The compound crystallizes in space group P1 (#1) with a = 8.2489(4), b = 9.4868(5), c = 15.8298(6) Å, α = 84.1387(4), β = 83.1560(3), γ = 85.0482(3) deg, V = 1220.071(9) Å3, and Z = 2. Hydrogen atoms (missing from the previously-reported structure) were included.


1987 ◽  
Vol 2 (4) ◽  
pp. 230-231 ◽  
Author(s):  
Charles A. Peck ◽  
Robert B. Ruokolainen

Abstract50-50 atomic percent lead telluride (Altaite), grown by the vapor transport method, was examined with a well aligned Rigaku horizontal beam diffractometer. PbTe is cubic (precise lattice parameter ao = 6.4591(5)Å) with an space group and a calculated density of 8.253 g/cm3. Fully indexed powder diffraction data are presented.


Sign in / Sign up

Export Citation Format

Share Document