A High-Temperature Study of Phase Precipitation in Superalloys

1959 ◽  
Vol 3 ◽  
pp. 365-375
Author(s):  
John F. Radavich

AbstractMany of the iron- and nickel-base superalloys exhibit brittle properties on heat treatment, welding, or other fabrication processes at temperatures of about 2000°F or higher. Studies have been carried out by means of electron microscopy, electron diffraction, and X-ray diffraction and fluorescence analysis of the precipitation in the metal and in an isolated form.Results of the electron microscope study of the surface of the metal show a grain boundary constituent to be present which increases in amount as the temperature is increased. Studies on the isolated residue of such samples show a very thin “featherlike” film to be located at the grain boundaries and enclosing the grains. Electron diffraction, X-ray diffraction, and X-ray fluorescence analysis studies of the thin films indicate that they are a TiC phase with very little alloying elements in solution.At temperatures above 2000°F the thin film becomes quite thick and tends to force the grains apart. It is believed that this form of the TiC phase promotes the severe embrittling nature of these alloys at high temperatures. Suitable heat treatment at lower temperatures causes the TiC film to agglomerate and the grain boundaries become “tight,” and a more ductile condition results.

Author(s):  
J. E. T. Horne ◽  
J. R. Butler

SummaryLyndochite from Tura dukas, 35 miles north of Nanyuki, Kenya, agrees closely with the type material from Canada in its chemical analysis, in the distribution of the rare earths, and in X-ray diffraction data for powder after heat treatment. The mineral is compared and contrasted with aeschynite. Uranium-poor euxenite is intimately associated with lyndochite at the type locality.Since its discovery over thirty-five years ago, lyndochite has remained unrecorded outside its type locality of Lyndoch Township in Ontario, Canada. Its distinctive chemical composition sets it apart from almost all other Ti-rich metamiet niobates and, despite the many analyses that have been made on rare-earth niobate-tantalates, specimens that could have been regarded as similar to or approximating to lyndochite have rarely been mentioned. Its unusual characteristics include high ThO2 (about 10%) and appreciable rare-earth oxides (about 20%) with a lanthanon assemblage showing a peak concentration of Nd (and Ce), rather than any of the heavy lanthanons. The proportions of TiO2 (about 20%) and (Nb,Ta)2O5 (about 40%) are comparable to those in numerous niobate-tantalates, but are only associated with the percentages of ThO2 and Re2O3 mentioned above in some members of the aesehynite-priorite series. The lyndochite now described is chemically very close indeed to the Canadian lyndochite, and both specimens give closely similar X-ray diffraction patterns (after suitable heat treatment) which are distinct from those of any other metamict mineral.


2014 ◽  
Vol 802 ◽  
pp. 457-461 ◽  
Author(s):  
José Hélio Duvaizem ◽  
N.M.F. Mendes ◽  
J.C.S. Casini ◽  
A.H. Bressiani ◽  
H. Takiishi

Ti-13Nb-13Zr alloy produced via powder metallurgy was submitted to heat treatment under various conditions and the effects on microstructure and elastic modulus were investigated. Heat treatment was performed using temperatures above and below α/β transus combined with different cooling rates – furnace cooling and water quenching. Microstructure and phases were analyzed employing scanning electron microscopy and X-ray diffraction. Elastic Modulus was determined using a dynamic mechanical analyzer (DMA). The results indicated that α phase precipitation and elastic modulus values increased after heat treatment performed using temperature below α/β transus. However, when it was performed above α/β transus and using higher cooling rate, a decrease in elastic modulus was observed despite higher α phase precipitation, indicating that the microstructural modifications observed via SEM, due to the presence of martensitic α phase, influenced on elastic modulus values.


Author(s):  
Robert M. Glaeser ◽  
David W. Deamer

In the investigation of the molecular organization of cell membranes it is often supposed that lipid molecules are arranged in a bimolecular film. X-ray diffraction data obtained in a direction perpendicular to the plane of suitably layered membrane systems have generally been interpreted in accord with such a model of the membrane structure. The present studies were begun in order to determine whether selected area electron diffraction would provide a tool of sufficient sensitivity to permit investigation of the degree of intermolecular order within lipid films. The ultimate objective would then be to apply the method to single fragments of cell membrane material in order to obtain data complementary to the transverse data obtainable by x-ray diffraction.


Author(s):  
William F. Tivol ◽  
Murray Vernon King ◽  
D. F. Parsons

Feasibility of isomorphous substitution in electron diffraction is supported by a calculation of the mean alteration of the electron-diffraction structure factors for hemoglobin crystals caused by substituting two mercury atoms per molecule, following Green, Ingram & Perutz, but with allowance for the proportionality of f to Z3/4 for electron diffraction. This yields a mean net change in F of 12.5%, as contrasted with 22.8% for x-ray diffraction.Use of the hydration chamber in electron diffraction opens prospects for examining many proteins that yield only very thin crystals not suitable for x-ray diffraction. Examination in the wet state avoids treatments that could cause translocation of the heavy-atom labels or distortion of the crystal. Combined with low-fluence techniques, it enables study of the protein in a state as close to native as possible.We have undertaken a study of crystals of rat hemoglobin by electron diffraction in the wet state. Rat hemoglobin offers a certain advantage for hydration-chamber work over other hemoglobins in that it can be crystallized from distilled water instead of salt solutions.


Author(s):  
Y. P. Lin ◽  
J. S. Xue ◽  
J. E. Greedan

A new family of high temperature superconductors based on Pb2Sr2YCu3O9−δ has recently been reported. One method of improving Tc has been to replace Y partially with Ca. Although the basic structure of this type of superconductors is known, the detailed structure is still unclear, and various space groups has been proposed. In our work, crystals of Pb2Sr2YCu3O9−δ with dimensions up to 1 × 1 × 0.25.mm and with Tc of 84 K have been grown and their superconducting properties described. The defects and crystal symmetry have been investigated using electron microscopy performed on crushed crystals supported on a holey carbon film.Electron diffraction confirmed x-ray diffraction results which showed that the crystals are primitive orthorhombic with a=0.5383, b=0.5423 and c=1.5765 nm. Convergent Beam Electron Diffraction (CBED) patterns for the and axes are shown in Figs. 1 and 2 respectively.


Author(s):  
M. Vallet-Regí ◽  
M. Parras ◽  
J.M. González-Calbet ◽  
J.C. Grenier

BaFeO3-y compositions (0.35<y<0.50) have been investigated by means of electron diffraction and microscopy to resolve contradictory results from powder X-ray diffraction data.The samples were obtained by annealing BaFeO2.56 for 48 h. in the temperature range from 980°C to 1050°C . Total iron and barium in the samples were determined using chemical analysis and gravimetric methods, respectively.In the BaFeO3-y system, according to the electron diffraction and microscopy results, the nonstoichiometry is accommodated in different ways as a function of the composition (y):In the domain between BaFeO2.5+δBaFeO2.54, compositional variations are accommodated through the formation of microdomains. Fig. la shows the ED pattern of the BaFeO2.52 material along thezone axis. The corresponding electron micrograph is seen in Fig. 1b. Several domains corresponding to the monoclinic BaFeO2.50 phase, intergrow with domains of the orthorhombic phase. According to that, the ED pattern of Fig. 1a, can be interpreted as formed by the superposition of three types of diffraction maxima : Very strong spots corresponding to a cubic perovskite, a set of maxima due to the superposition of three domains of the monoclinic phase along [100]m and a series of maxima corresponding to three domains corresponding to the orthorhombic phase along the [100]o.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1154
Author(s):  
Diego E. Lozano ◽  
George E. Totten ◽  
Yaneth Bedolla-Gil ◽  
Martha Guerrero-Mata ◽  
Marcel Carpio ◽  
...  

Automotive components manufacturers use the 5160 steel in leaf and coil springs. The industrial heat treatment process consists in austenitizing followed by the oil quenching and tempering process. Typically, compressive residual stresses are induced by shot peening on the surface of automotive springs to bestow compressive residual stresses that improve the fatigue resistance and increase the service life of the parts after heat treatment. In this work, a high-speed quenching was used to achieve compressive residual stresses on the surface of AISI/SAE 5160 steel samples by producing high thermal gradients and interrupting the cooling in order to generate a case-core microstructure. A special laboratory equipment was designed and built, which uses water as the quenching media in a high-speed water chamber. The severity of the cooling was characterized with embedded thermocouples to obtain the cooling curves at different depths from the surface. Samples were cooled for various times to produce different hardened case depths. The microstructure of specimens was observed with a scanning electron microscope (SEM). X-ray diffraction (XRD) was used to estimate the magnitude of residual stresses on the surface of the specimens. Compressive residual stresses at the surface and sub-surface of about −700 MPa were obtained.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 507 ◽  
Author(s):  
Maxim Rudmin ◽  
Elshan Abdullayev ◽  
Alexey Ruban ◽  
Ales Buyakov ◽  
Bulat Soktoev

We investigated the mechanochemical synthesis of complex slow release fertilizers (SRF) derived from glauconite. We studied the effectiveness of the mechanical intercalation of urea into glauconite using planetary and ring mills. The potassium-nitric complex SRFs were synthesized via a mechanochemical method mixing glauconite with urea in a 3:1 ratio. The obtained composites were analyzed using X-ray diffraction analysis, scanning electron microscopy, X-ray fluorescence analysis, and infrared spectroscopy. The results show that as duration of mechanochemical activation increases, the mineralogical, chemical, and structural characteristics of composites change. Essential modifications associated with a decrease in absorbed urea and the formation of microcrystallites were observed when the planetary milling time increased from 5 to 10 min and the ring milling from 15 to 30 min. Complete intercalation of urea into glauconite was achieved by 20 min grinding in a planetary mill or 60 min in a ring mill. Urea intercalation in glauconite occurs much faster when using a planetary mill compared to a ring mill.


2000 ◽  
Vol 5 (S1) ◽  
pp. 97-103
Author(s):  
Kathleen A. Dunn ◽  
Susan E. Babcock ◽  
Donald S. Stone ◽  
Richard J. Matyi ◽  
Ling Zhang ◽  
...  

Diffraction-contrast TEM, focused probe electron diffraction, and high-resolution X-ray diffraction were used to characterize the dislocation arrangements in a 16µm thick coalesced GaN film grown by MOVPE LEO. As is commonly observed, the threading dislocations that are duplicated from the template above the window bend toward (0001). At the coalescence plane they bend back to lie along [0001] and thread to the surface. In addition, three other sets of dislocations were observed. The first set consists of a wall of parallel dislocations lying in the coalescence plane and nearly parallel to the substrate, with Burgers vector (b) in the (0001) plane. The second set is comprised of rectangular loops with b = 1/3 [110] (perpendicular to the coalescence boundary) which originate in the coalescence boundary and extend laterally into the film on the (100). The third set of dislocations threads laterally through the film along the [100] bar axis with 1/3<110>-type Burgers vectors These sets result in a dislocation density of ∼109 cm−2. High resolution X-ray reciprocal space maps indicate wing tilt of ∼0.5º.


2007 ◽  
Vol 86 (1) ◽  
pp. 69-72 ◽  
Author(s):  
M. Kida ◽  
Y. Sakiyama ◽  
A. Matsuda ◽  
S. Takabayashi ◽  
H. Ochi ◽  
...  

Amelogenesis imperfecta (AI) is a hereditary disease with abnormal dental enamel formation. Here we report a Japanese family with X-linked AI transmitted over at least four generations. Mutation analysis revealed a novel mutation (p.P52R) in exon 5 of the amelogenin gene. The mutation was detected as heterozygous in affected females and as hemizygous in their affected father. The affected sisters exhibited vertical ridges on the enamel surfaces, whereas the affected father had thin, smooth, yellowish enamel with distinct widening of inter-dental spaces. To study the pathological cause underlying the disease in this family, we synthesized the mutant amelogenin p.P52R protein and evaluated it in vitro. Furthermore, we studied differences in the chemical composition between normal and affected teeth by x-ray diffraction analysis and x-ray fluorescence analysis. We believe that these results will greatly aid our understanding of the pathogenesis of X-linked AI.


Sign in / Sign up

Export Citation Format

Share Document