The Temperature Profiles along Heating-Strips in High Temperature Chambers for XRD

1992 ◽  
Vol 36 ◽  
pp. 403-410 ◽  
Author(s):  
R. Ebner ◽  
M. Mantler ◽  
F. Weber

A prototype of a new high temperature chamber has been developed at our institute. Like most of such chambers it has an evacuated housing which is watercooled, and in its center a tungsten heating strip is mounted on watercooled clamps (fig.1). A special way of clamping compensates for thermal expansion automatically and thus keeps the specimen in an aligned position. The specimen is mounted directly onto the heating strip's surface. Specimens are prepared using fine powders mixed with distilled water and acetone to give a thin slurry. This mixture is put onto the heating strip and carefully dried with a heatgun. This way of preparing a specimen makes it cling to the heating strip quite well even at temperatures above 3000K and therefore provides good thermal contact.

1998 ◽  
Vol 518 ◽  
Author(s):  
H. Tada ◽  
A. R. Abramson ◽  
P. Nieva ◽  
P. Zavracky ◽  
I. N. Miaoulis ◽  
...  

AbstractIn high temperature processing of microelectronics such as rapid thermal processing (RTP), an accurate measurement of temperature is critical in fabricating defect-free devices. Currently, temperatures during such processes are measured using thermocouples or pyrometers. However, accurate measurements with thermocouples are troublesome due to the difficulties in holding the thermocouples in place and maintaining good thermal contact. A further drawback for thermocouples is that they are highly intrusive. For pyrometers, optical interference effects and partial transparency limit their applicability and the local temperature of wafers near the electronic devices are difficult to measure using pyrometer due to relatively large spot size. Microelectromechanical systems (MEMS) technology is being used in developing innovative temperature sensor (T-MEMS), which allow an ex-situ examination of the maximum temperature reached during a thermal process by creating a permanent change in structure at high temperatures. The performance of the device relies on the thermophysical properties of the materials; specifically, the Young's modulus, thermal expansion coefficient, and the ultimate strength must be considered for silicon, and silicon nitride. Through careful experimental design and accurate modeling of their structural behavior, the high-temperature material properties can be determined using the T-MEMS and calibrated furnaces.


Alloy Digest ◽  
1987 ◽  
Vol 36 (8) ◽  

Abstract NILO alloy 36 is a binary iron-nickel alloy having a very low and essentially constant coefficient of thermal expansion at atmospheric temperatures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Fe-79. Producer or source: Inco Alloys International Inc..


Alloy Digest ◽  
1971 ◽  
Vol 20 (1) ◽  

Abstract UNISPAN LR35 offers the lowest coefficient of thermal expansion of any alloy now available. It is a low residual modification of UNISPAN 36 for fully achieving the demanding operational level of precision equipment. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and surface treatment. Filing Code: Fe-46. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1960 ◽  
Vol 9 (2) ◽  

Abstract RED X-20 is a heat treatable hypereutectic aluminum-silicon alloy with excellent wear resistance and a very low coefficient of thermal expansion. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-89. Producer or source: Apex Smelting Company.


Alloy Digest ◽  
2004 ◽  
Vol 53 (8) ◽  

Abstract Carpenter Invar 36 alloy is a 36% nickel-iron alloy with a rate of thermal expansion approximately one-tenth that of carbon steel at temperatures up to 204 deg C (400 deg F). This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on low and high temperature performance. Filing Code: FE-131. Producer or source: Carpenter Technology Corporation.


Alloy Digest ◽  
1990 ◽  
Vol 39 (7) ◽  

Abstract AA 4032 has a comparatively low coefficient of thermal expansion and good forgeability. The alloy takes on an attractive dark gray appearance when anodized which may be desirable in architectural applications. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-305. Producer or source: Various aluminum companies.


Small ◽  
2021 ◽  
pp. 2102128
Author(s):  
Taehun Kim ◽  
Seongkyun Kim ◽  
Eungchul Kim ◽  
Taesung Kim ◽  
Jungwan Cho ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 173
Author(s):  
Patrice Berthod ◽  
Lionel Aranda ◽  
Jean-Paul Gomis

Nickel is often added to cobalt-based superalloys to stabilize their austenitic structure. In this work the effects of Ni on several high temperature properties of a chromium-rich cobalt-based alloy reinforced by high fraction of TaC carbides are investigated. Different thermal analysis techniques are used: differential scanning calorimetry (DSC), thermo-mechanical analysis (TMA) and thermogravimetry (TG). Results show that the progressive addition of nickel did not induce great modifications of microstructure, refractoriness or thermal expansion. However, minor beneficial effects were noted, including reduction of the melting temperature range and slight decrease in thermal expansion coefficient. The most important improvement induced by Ni addition concerns the hot oxidation behavior. In this way, introducing several tens wt % Ni in this type of cobalt-based alloy may be recommended.


Sign in / Sign up

Export Citation Format

Share Document