scholarly journals Effects of Ni Additions on the High Temperature Expansion, Melting and Oxidation Behaviors of Cobalt-Based Superalloys

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 173
Author(s):  
Patrice Berthod ◽  
Lionel Aranda ◽  
Jean-Paul Gomis

Nickel is often added to cobalt-based superalloys to stabilize their austenitic structure. In this work the effects of Ni on several high temperature properties of a chromium-rich cobalt-based alloy reinforced by high fraction of TaC carbides are investigated. Different thermal analysis techniques are used: differential scanning calorimetry (DSC), thermo-mechanical analysis (TMA) and thermogravimetry (TG). Results show that the progressive addition of nickel did not induce great modifications of microstructure, refractoriness or thermal expansion. However, minor beneficial effects were noted, including reduction of the melting temperature range and slight decrease in thermal expansion coefficient. The most important improvement induced by Ni addition concerns the hot oxidation behavior. In this way, introducing several tens wt % Ni in this type of cobalt-based alloy may be recommended.

2020 ◽  
Author(s):  
Lyaysan Amirova ◽  
Fabian Schadt ◽  
Markus Grob ◽  
Christian Brauner ◽  
Thomas Ricard ◽  
...  

AbstractA high temperature resistant novolac cyanate ester was blended with polyethersulfone (PES) with different molecular weights using the solvent-free approach. The phase separation, curing behavior and thermal properties were studied using hot stage microscopy, differential scanning calorimetry and dynamic mechanical analysis. Results showed the difference in the morphology for blends with different molecular weight PES explained by possible network formation. The influence of PES content on the glass transition temperature and mechanical properties was investigated. The most significant toughening effect (increase of 132% in fracture toughness) was achieved on a functionalized low molecular weight PES (20 parts per hundred of resin, phr). Rheology investigation allowed to estimate the optimal content of PES (15 phr) for further prepreg manufacturing.


2021 ◽  
Author(s):  
Francesco Marin ◽  
Serena Tombolesi ◽  
Tommaso Salzillo ◽  
Omer Yaffe ◽  
Lucia Maini

N,N’-dipentyl-3,4,9,10-perylendiimide (PDI-C5) is an organic semiconducting material which has been extensively investigated as model compound for its optoelectronic properties. It is known to be highly thermally stable, that it exhibits solid-state transitions with temperature and that thermal treatments lead to an improvement in its performance in devices. Here we report a full thermal characterization of PDI-C5 by combination of differential scanning calorimetry, variable temperature X-ray diffraction, hot stage microscopy, and variable temperature Raman spectroscopy. We identified two high temperature polymorphs, form II and form III, which form respectively at 112 °C and at 221 °C and we determined their crystal structure from powder data. Form II is completely reversible upon cooling with low hysteresis, while form III revealed a different thermal behaviour upon cooling depending on the technique and crystal size. The crystal structure’s features of the different polymorphs are discussed and compared, and we looked into the role of the perylene core and alkyl chains during solid-state transitions. The thermal expansion principal axis of PDI-C5 crystal forms is reported showing that all the reported forms possess negative thermal expansion (X1) and large positive thermal expansion (X3) which are correlated to thermal behaviour observed.


2012 ◽  
Vol 508 ◽  
pp. 42-47
Author(s):  
Shan Liu ◽  
Fei Chen ◽  
Ying Yang ◽  
Qiang Shen ◽  
Kai Peng Zhang

In this Study, a Good Combination between Si3N4-Based Seal Coatings and Porous Si3N4Substrate Was Achieved by Room Temperature Spraying and Pressureless Sintering. To Evaluate the Joint Quality, Residual Stress due to Thermal Expansion Mismatch between the Coatings and Porous Layers Were Characterized by Computational Studies Using the Finite Element ANSYS Code. It Was Found that Si3N4-Based Seal Coating Allows a Gradual Change in Thermal Expansion Mismatch, Minimizing the Thermal Stresses Arising from Cooling or Heating. Further Theoretical Analysis Indicates that the Thermal Expansion Mismatch between the Two Layers Produced a Large Strengthening Effect for the Fraction of the Porosity below a Critical Level and that Substrates with the High Fraction of Porosity Showed Complete Cracking, as the Cracks Initiating in Adjacent Coatings. And the Volume Fraction of Pores Required to Cause Crack Deflection, in the Porous Layer, Was Predicted. The Effects of Layer Thickness and Porosity Fraction on Residual Stress Were Studied, which Are Used as Predictions towards Better Design of Composite Materials.


2016 ◽  
Vol 29 (10) ◽  
pp. 1209-1221 ◽  
Author(s):  
Xinggang Chen ◽  
Jiayu Liu ◽  
Zhenjie Xi ◽  
Shuyan Shan ◽  
Huili Ding ◽  
...  

A series of self-catalytic phthalonitrile compounds with o-, m-, and p- amino groups, namely, 4-(2-aminophenoxy)phthalonitrile (2-NH2-CN), 4-(3-aminophenoxy)phthalonitrile (3-NH2-CN), and 4-(4-aminophenoxy)phthalonitrile (4-NH2-CN), were synthesized via a facile nucleophilic displacement of a nitro-substituent with 4-nitrophthalonitrile. The phthalonitrile resins were prepared by curing 2-NH2-CN, 3-NH2-CN, and 4-NH2-CN with 1,3-bis(3,4-dicyanophenoxy) benzene ( m-BDB). The structures of these compounds were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and wide-angle X-ray diffraction. Curing behaviors of 2-NH2-CN, 3-NH2-CN, and 4-NH2-CN with m-BDB were recorded by differential scanning calorimetry. The results show that the processabilities of m-BDB with 4-NH2-CN are superior to those with 2-NH2-CN and 3-NH2-CN due to higher self-catalytic efficiency and broader processing windows. Thermal stabilities were evaluated by thermogravimetric analysis, and the polymers with all these self-catalytic compounds exhibit excellent thermal and thermal-oxidative stabilities. Dynamic mechanical analysis reveals that these polymers have high storage modulus and high glass transition temperatures. The polymers of 4-NH2-CN show more outstanding processability, thermal stability, and dynamic mechanical properties than those of 2-NH2-CN and 3-NH2-CN and can be considered as a good candidate as a self-catalytic curing agent for high-temperature phthalonitrile polymers.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dayong Zhang ◽  
Xiaohui Liu ◽  
Xuefeng Bai ◽  
Gang Wang ◽  
Liping Rong ◽  
...  

Purpose The purpose of this study is to investigate the heat resistance and heat-resistant oxygen aging of 4-nitrophthalonitrile-etherified cardanol-phenol-formaldehyde (PPCF) to further use and develop the resin as the matrix resin of high-temperature resistant adhesives and coatings. Design/methodology/approach PPCF resin was synthesized by 4-nitrophthalonitrile and cardanol-phenol-formaldehyde (PCF). The structures of PPCF and PCF were investigated by Fourier transform infrared, differential scanning calorimetry and proton nuclear magnetic resonance. In addition, the heat resistance and processability of PPCF and PCF resins were studied by dynamic mechanical analysis, thermogravimetric analysis, scanning electronic microscopy (SEM), X-ray diffraction (XRD) techniques and rheological studies. Findings The results reveal that PPCF forms a cross-linked network at a lower temperature. PPCF resin has excellent resistance under thermal aging in an air atmosphere and that it still had a certain residual weight after aging at 500°C for 2 h, whereas the PCF resin is completely decomposed. Originality/value 4-Nitrophthalonitrile was introduced into PCF resin, and XRD and SEM were used to investigate the high temperature residual carbon rate and heat-resistant oxygen aging properties of PPCF and PCF resins.


1999 ◽  
Vol 72 (3) ◽  
pp. 513-552 ◽  
Author(s):  
A. K. Sircar ◽  
M. L. Galaska ◽  
S. Rodrigues ◽  
R. P. Chartoff

Abstract The paper defines the glass transition temperature (Tg) of elastomers using various thermal analysis techniques (differential scanning calorimetry, DSC; derivative DSC; thermomechanical analysis, TMA; dynamic mechanical analysis, DMA; dielectric analysis, DEA; thermal stimulated current, TSC) and compares Tg values of eight elastomers by the first four techniques. Comparison of Tg by two TMA methods (expansion and penetration) is also included. Necessary information regarding both the specific technique and the sample used to compare published data is mentioned. Their inclusion, along with the Tg data, is emphasized. Correlation of Tg, as determined by thermal methods with that determined by an industrial low-temperature test method (ASTM D 1053-89a) is discussed. The factors that are unique to elastomer Tg determination, such as subambient operation, as compared to other polymers, are pointed out.


Author(s):  
B. M. Culbertson ◽  
M. L. Devinev ◽  
E. C. Kao

The service performance of current dental composite materials, such as anterior and posterior restoratives and/or veneer cements, needs to be improved. As part of a comprehensive effort to find ways to improve such materials, we have launched a broad spectrum study of the physicochemical and mechanical properties of photopolymerizable or visible light cured (VLC) dental composites. The commercially available VLC materials being studied are shown in Table 1. A generic or neat resin VLC system is also being characterized by SEM and TEM, to more fully understand formulation variables and their effects on properties.At a recent dental research meeting, we reported on the differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) characterization of the materials in Table 1. It was shown by DSC and DMA that the materials are substantially undercured by commonly used VLC techniques. Post curing in an oral cavity or a dry environment at 37 to 50°C for 7 or more hours substantially enhances the cure of the materials.


Alloy Digest ◽  
1987 ◽  
Vol 36 (8) ◽  

Abstract NILO alloy 36 is a binary iron-nickel alloy having a very low and essentially constant coefficient of thermal expansion at atmospheric temperatures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Fe-79. Producer or source: Inco Alloys International Inc..


Alloy Digest ◽  
1971 ◽  
Vol 20 (1) ◽  

Abstract UNISPAN LR35 offers the lowest coefficient of thermal expansion of any alloy now available. It is a low residual modification of UNISPAN 36 for fully achieving the demanding operational level of precision equipment. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and surface treatment. Filing Code: Fe-46. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1960 ◽  
Vol 9 (2) ◽  

Abstract RED X-20 is a heat treatable hypereutectic aluminum-silicon alloy with excellent wear resistance and a very low coefficient of thermal expansion. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-89. Producer or source: Apex Smelting Company.


Sign in / Sign up

Export Citation Format

Share Document