scholarly journals Dependence on the Partial Pressure of Oxygen on the Shift in the Energy Band-gap of CdO Thin Films in the Visible Region

2001 ◽  
Vol 24 (1) ◽  
pp. 57-61 ◽  
Author(s):  
M. A. Grado-Caffaro ◽  
M. Grado-Caffaro ◽  
S. L. Sapienza

In this paper, the dependence on the partial pressure of oxygen of the shift in the energy band-gap of CdO thin films for the visible region is investigated from the theoretical point of view on an experimental basis. In our analysis, the role played by the dependence of the carrier density upon the above pressure is emphasized.

2016 ◽  
Vol 30 (31) ◽  
pp. 1650371 ◽  
Author(s):  
M. A. Grado-Caffaro ◽  
M. Grado-Caffaro

With the aim of providing an analytical approach (not accurate numerical results), for the first time, the sensitivity to the partial pressure of oxygen of the shift in the energy band gap experienced by cadmium-oxide thin films is evaluated for the visible region by introducing a suitable parameter. The sensitivity to the above pressure of the spatial carrier density is determined and compared with the sensitivity relative to the band gap shift. The gradient of the CdO carrier concentration as a function of the partial pressure of oxygen appears in the expressions for the two above sensitivity functions but the goal of this paper is not computing numerically this gradient so only qualitative estimations are done. In relation to the above results, the kinetics relative to the formation of CdO thin films are investigated. In addition, the sensitivity to the pressure in question of the corresponding optical-absorption shift in the visible range is calculated.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. A. Faremi ◽  
S. S. Oluyamo ◽  
O. Olubosede ◽  
I. O. Olusola ◽  
M. A. Adekoya ◽  
...  

Abstract In this paper, energy band gaps and electrical conductivity based on aluminum selenide (Al2Se3) thin films are synthesized electrochemically using cathodic deposition technique, with graphite and carbon as cathode and anode, respectively. Synthesis is done at 353 K from an aqueous solution of analytical grade selenium dioxide (SeO2), and aluminum chloride (AlCl2·7H2O). Junctions-based Al2Se3 thin films from a controlled medium of pH 2.0 are deposited on fluorine-doped tin oxide (FTO) substrate using potential voltages varying from 1,000 mV to 1,400 mV and 3 minutes −15 minutes respectively. The films were characterized for optical properties and electrical conductivity using UV-vis and photoelectrochemical cells (PEC) spectroscopy. The PEC reveals a transition in the conduction of the films from p-type to n-type as the potential voltage varies. The energy band gap reduces from 3.2 eV to 2.9 eV with an increase in voltage and 3.3 eV to 2.7 eV with increase in time. These variations indicate successful fabrication of junction-based Al2Se3 thin films with noticeable transition in the conductivity type and energy band gap of the materials. Consequently, the fabricated Al2Se3 can find useful applications in optoelectronic devices.


2010 ◽  
Vol 404 (1) ◽  
pp. 186-191 ◽  
Author(s):  
J.-K. Chung ◽  
J. W. Kim ◽  
D. Do ◽  
S. S. Kim ◽  
T. K. Song ◽  
...  

2016 ◽  
Vol 28 (4) ◽  
pp. 347-354 ◽  
Author(s):  
Javed Iqbal ◽  
Asim Jilani ◽  
P.M. Ziaul Hassan ◽  
Saqib Rafique ◽  
Rashida Jafer ◽  
...  

2003 ◽  
Vol 764 ◽  
Author(s):  
Sang Yeol Lee ◽  
Yuan Li ◽  
Jang-Sik Lee ◽  
J. K. Lee ◽  
M. Nastasi ◽  
...  

AbstractZnCdO thin films were deposited on (001) sapphire substrates by pulsed laser deposition. Modulation of the energy band gap of ZnCdO was induced by changing the processing parameters. The optical energy band gap of ZnCdO thin films, measured by photoluminescence and transmittance, changed from 3.289 eV to 3.311 eV due to the variation of annealing temperatures. The change of the optical properties was attributed to the change of the stoichiometry of ZnxCd1-xO as illustrated by Rutherford backscattering spectroscopy.


2011 ◽  
Vol 110-116 ◽  
pp. 1176-1180
Author(s):  
Badrul Munir ◽  
Kim Kyoo Ho

Gallium or sulphur additions in CuInSe2 were prepared using RF magnetron sputtering and pulsed laser deposition respectively. All of the observed thin films show a chalcopyrite structure with the S addition increases the favourable (112) peak. The optical absorption coefficients were slightly decreased. The films energy band gap could be shifted from 1.04 to 1.68eV by adjusting the mole ratio of S/(S+Se) and In/(In+Ga). It is possible to obtain the optimum energy band gap by adding S solute or Ga at a certain ratio in favour of Se and In respectively. It is also necessary to control the ratio of Ga and S additions and to retain a certain portion of In to provide better properties of CIS films.


Sign in / Sign up

Export Citation Format

Share Document