scholarly journals The Importance of Cognitive Phenotypes in Experimental Modeling of Animal Anxiety and Depression

2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
Allan V. Kalueff ◽  
Dennis L. Murphy

Cognitive dysfunctions are commonly seen in many stress-related disorders, including anxiety and depression—the world's most common neuropsychiatric illnesses. Various genetic, pharmacological, and behavioral animal models have long been used to establish animal anxiety-like and depression-like phenotypes, as well as to assess their memory, learning, and other cognitive functions. Mounting clinical and animal evidences strongly supports the notion that disturbed cognitions represent an important pathogenetic factor in anxiety and depression, and may also play a role inintegratingthe two disorders within a common stress-precipitated developmental pathway. This paper evaluates why and how the assessment of cognitive and emotional domains may improve our understanding of animal behaviors via different high-throughput tests and enable a better translation of animal phenotypes into human brain disorders.

2019 ◽  
Vol 2 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Pike-See Cheah ◽  
John O. Mason ◽  
King Hwa Ling

The human brain is made up of billions of neurons and glial cells which are interconnected and organized into specific patterns of neural circuitry, and hence is arguably the most sophisticated organ in human, both structurally and functionally. Studying the underlying mechanisms responsible for neurological or neurodegenerative disorders and the developmental basis of complex brain diseases such as autism, schizophrenia, bipolar disorder, Alzheimer’s and Parkinson’s disease has proven challenging due to practical and ethical limitations on experiments with human material and the limitations of existing biological/animal models. Recently, cerebral organoids have been proposed as a promising and revolutionary model for understanding complex brain disorders and preclinical drug screening.


2016 ◽  
Vol 39 ◽  
Author(s):  
Giosuè Baggio ◽  
Carmelo M. Vicario

AbstractWe agree with Christiansen & Chater (C&C) that language processing and acquisition are tightly constrained by the limits of sensory and memory systems. However, the human brain supports a range of cognitive functions that mitigate the effects of information processing bottlenecks. The language system is partly organised around these moderating factors, not just around restrictions on storage and computation.


2021 ◽  
Vol 16 ◽  
pp. 263310552110187
Author(s):  
Christopher D Link

Numerous studies have identified microbial sequences or epitopes in pathological and non-pathological human brain samples. It has not been resolved if these observations are artifactual, or truly represent population of the brain by microbes. Given the tempting speculation that resident microbes could play a role in the many neuropsychiatric and neurodegenerative diseases that currently lack clear etiologies, there is a strong motivation to determine the “ground truth” of microbial existence in living brains. Here I argue that the evidence for the presence of microbes in diseased brains is quite strong, but a compelling demonstration of resident microbes in the healthy human brain remains to be done. Dedicated animal models studies may be required to determine if there is indeed a “brain microbiome.”


2018 ◽  
Vol 85 ◽  
pp. 176-190 ◽  
Author(s):  
Soaleha Shams ◽  
Jason Rihel ◽  
Jose G. Ortiz ◽  
Robert Gerlai

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohammad Ali Salehinejad ◽  
Miles Wischnewski ◽  
Elham Ghanavati ◽  
Mohsen Mosayebi-Samani ◽  
Min-Fang Kuo ◽  
...  

AbstractCircadian rhythms have natural relative variations among humans known as chronotype. Chronotype or being a morning or evening person, has a specific physiological, behavioural, and also genetic manifestation. Whether and how chronotype modulates human brain physiology and cognition is, however, not well understood. Here we examine how cortical excitability, neuroplasticity, and cognition are associated with chronotype in early and late chronotype individuals. We monitor motor cortical excitability, brain stimulation-induced neuroplasticity, and examine motor learning and cognitive functions at circadian-preferred and non-preferred times of day in 32 individuals. Motor learning and cognitive performance (working memory, and attention) along with their electrophysiological components are significantly enhanced at the circadian-preferred, compared to the non-preferred time. This outperformance is associated with enhanced cortical excitability (prominent cortical facilitation, diminished cortical inhibition), and long-term potentiation/depression-like plasticity. Our data show convergent findings of how chronotype can modulate human brain functions from basic physiological mechanisms to behaviour and higher-order cognition.


2021 ◽  
Vol 42 (3) ◽  
pp. 130
Author(s):  
Sudip Dhakal

The difficulties in performing experimental studies related to diseases of the human brain have fostered a range of disease models from highly expensive and complex animal models to simple, robust, unicellular yeast models. Yeast models have been used in numerous studies to understand Alzheimer’s disease (AD) pathogenesis and to search for drugs targeting AD. Thanks to the conservation of fundamental eukaryotic processes including ageing and the availability of appropriate technological platforms, budding yeast are a simple model eukaryote to assist with understanding human cell biology, offering a platform to study human diseases. This article aims to provide insights from yeast models on the contributions of amyloid beta, a causative agent in AD, and recent research findings on AD chemoprevention.


2020 ◽  
Author(s):  
Oliver L. Eichmüller ◽  
Nina S. Corsini ◽  
Ábel Vértesy ◽  
Theresa Scholl ◽  
Victoria-Elisabeth Gruber ◽  
...  

SummaryAlthough the intricate and prolonged development of the human brain critically distinguishes it from other mammals1, our current understanding of neurodevelopmental diseases is largely based on work using animal models. Recent studies revealed that neural progenitors in the human brain are profoundly different from those found in rodent animal models2–5. Moreover, post-mortem studies revealed extensive migration of interneurons into the late-gestational and post-natal human prefrontal cortex that does not occur in rodents6. Here, we use cerebral organoids to show that overproduction of mid-gestational human interneurons causes Tuberous Sclerosis Complex (TSC), a severe neuro-developmental disorder associated with mutations in TSC1 and TSC2. We identify a previously uncharacterized population of caudal late interneuron progenitors, the CLIP-cells. In organoids derived from patients carrying heterozygous TSC2 mutations, dysregulation of mTOR signaling leads to CLIP-cell over-proliferation and formation of cortical tubers and subependymal tumors. Surprisingly, second-hit events resulting from copy-neutral loss-of-heterozygosity (cnLOH) are not causative for but occur during the progression of tumor lesions. Instead, EGFR signaling is required for tumor proliferation, opening up a promising approach to treat TSC lesions. Our study demonstrates that the analysis of developmental disorders in organoid models can lead to fundamental insights into human brain development and neuropsychiatric disorders.


Sign in / Sign up

Export Citation Format

Share Document