scholarly journals The zebrafish as a promising tool for modeling human brain disorders: A review based upon an IBNS Symposium

2018 ◽  
Vol 85 ◽  
pp. 176-190 ◽  
Author(s):  
Soaleha Shams ◽  
Jason Rihel ◽  
Jose G. Ortiz ◽  
Robert Gerlai
2017 ◽  
Vol 20 (7) ◽  
pp. 1033-1033 ◽  
Author(s):  
Charles Jennings ◽  
Rogier Landman ◽  
Yang Zhou ◽  
Jitendra Sharma ◽  
Julia Hyman ◽  
...  
Keyword(s):  

mSystems ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Sylvie Janssens ◽  
Michael Schotsaert ◽  
Rahul Karnik ◽  
Vinod Balasubramaniam ◽  
Marion Dejosez ◽  
...  

Scientific research on human neural stem cells and cerebral organoids has confirmed the congenital neurotropic and neurodestructive nature of the Zika virus. However, the extent to which prenatal ZIKV infection is associated with more subtle brain alterations, such as epigenetic changes, remains ill defined. Here, we address the question of whether ZIKV infection induces DNA methylation changes with the potential to cause brain disorders later in life.


2019 ◽  
Vol 116 (52) ◽  
pp. 26167-26172 ◽  
Author(s):  
Elizabeth A. Buffalo ◽  
J. Anthony Movshon ◽  
Robert H. Wurtz

2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
Allan V. Kalueff ◽  
Dennis L. Murphy

Cognitive dysfunctions are commonly seen in many stress-related disorders, including anxiety and depression—the world's most common neuropsychiatric illnesses. Various genetic, pharmacological, and behavioral animal models have long been used to establish animal anxiety-like and depression-like phenotypes, as well as to assess their memory, learning, and other cognitive functions. Mounting clinical and animal evidences strongly supports the notion that disturbed cognitions represent an important pathogenetic factor in anxiety and depression, and may also play a role inintegratingthe two disorders within a common stress-precipitated developmental pathway. This paper evaluates why and how the assessment of cognitive and emotional domains may improve our understanding of animal behaviors via different high-throughput tests and enable a better translation of animal phenotypes into human brain disorders.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Raúl Delgado-Morales ◽  
Roberto Carlos Agís-Balboa ◽  
Manel Esteller ◽  
María Berdasco

Author(s):  
Madhulika Vinny ◽  
◽  
Pawan Singh ◽  

Blue brain is a supercomputer programmed such that it can function as an artificial brain, which can also be called a virtual brain. IBM is developing this virtual brain which would be the world’s first such created machine. Its main aim is to create a machine in which the information of the actual brain can be uploaded. This would ensure that a person’s knowledge, personality, memories, and intelligence are preserved and safe. The Blue Brain project utilizes the technologies of reverse engineering and artificial intelligence at its core and is implemented through the use of supercomputers and nanobots. Special software like BBP-SDK are also specifically developed for the Blue Brain project. The Blue Brain project is centered towards finding viable solutions to brain-disorders, a working model close to the actual brain which would help in greater understanding of the human brain and the human mind and the state of consciousness, a step towards building an independently thinking machine, and finally collecting information of hundreds of years from the human brains and storing it in the form of a databases. The Blue Brain project mimics the human brain by acquiring the data from its surrounding through special software, interpreting through neural electrophysiology and morphology, and simulating them on computers. Thus, The Blue Brain project is a powerful tool for the study and analysis of the human brain and for the advancement of the human brain and society.


2019 ◽  
Vol 2 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Pike-See Cheah ◽  
John O. Mason ◽  
King Hwa Ling

The human brain is made up of billions of neurons and glial cells which are interconnected and organized into specific patterns of neural circuitry, and hence is arguably the most sophisticated organ in human, both structurally and functionally. Studying the underlying mechanisms responsible for neurological or neurodegenerative disorders and the developmental basis of complex brain diseases such as autism, schizophrenia, bipolar disorder, Alzheimer’s and Parkinson’s disease has proven challenging due to practical and ethical limitations on experiments with human material and the limitations of existing biological/animal models. Recently, cerebral organoids have been proposed as a promising and revolutionary model for understanding complex brain disorders and preclinical drug screening.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 286 ◽  
Author(s):  
Marina Warepam ◽  
Khurshid Ahmad ◽  
Safikur Rahman ◽  
Hamidur Rahaman ◽  
Kritika Kumari ◽  
...  

Most of the human diseases related to various proteopathies are confined to the brain, which leads to the development of various forms of neurological disorders. The human brain consists of several osmolytic compounds, such as N-Acetylaspartate (NAA), myo-inositol (mI), glutamate (Glu), glutamine (Gln), creatine (Cr), and choline-containing compounds (Cho). Among these osmolytes, the level of NAA drastically decreases under neurological conditions, and, hence, NAA is considered to be one of the most widely accepted neuronal biomarkers in several human brain disorders. To date, no data are available regarding the effect of NAA on protein stability, and, therefore, the possible effect of NAA under proteopathic conditions has not been fully uncovered. To gain an insight into the effect of NAA on protein stability, thermal denaturation and structural measurements were carried out using two model proteins at different pH values. The results indicate that NAA increases the protein stability with an enhancement of structure formation. We also observed that the stabilizing ability of NAA decreases in a pH-dependent manner. Our study indicates that NAA is an efficient protein stabilizer at a physiological pH.


2020 ◽  
Vol 117 (39) ◽  
pp. 24022-24031 ◽  
Author(s):  
Guoping Feng ◽  
Frances E. Jensen ◽  
Henry T. Greely ◽  
Hideyuki Okano ◽  
Stefan Treue ◽  
...  

The recently developed new genome-editing technologies, such as the CRISPR/Cas system, have opened the door for generating genetically modified nonhuman primate (NHP) models for basic neuroscience and brain disorders research. The complex circuit formation and experience-dependent refinement of the human brain are very difficult to model in vitro, and thus require use of in vivo whole-animal models. For many neurodevelopmental and psychiatric disorders, abnormal circuit formation and refinement might be at the center of their pathophysiology. Importantly, many of the critical circuits and regional cell populations implicated in higher human cognitive function and in many psychiatric disorders are not present in lower mammalian brains, while these analogous areas are replicated in NHP brains. Indeed, neuropsychiatric disorders represent a tremendous health and economic burden globally. The emerging field of genetically modified NHP models has the potential to transform our study of higher brain function and dramatically facilitate the development of effective treatment for human brain disorders. In this paper, we discuss the importance of developing such models, the infrastructure and training needed to maximize the impact of such models, and ethical standards required for using these models.


Sign in / Sign up

Export Citation Format

Share Document